| **TEST REPORT**
| IEC 60950-1
| Information technology equipment - Safety - Part 1: General requirements |

Report Reference No	E135494-A56-CB-3
Date of issue	2015-03-27
Total number of pages	86

| CB Testing Laboratory | UL International Demko A/S
| Address | Borupvang 5A, 2750 Ballerup, Denmark |

| Applicant's name | TDK-LAMBDA UK LTD
| Address | KINGSLEY AVE
| | ILFRACOMBE
| | DEVON
| | EX34 8ES UNITED KINGDOM |

| Test specification:
| Test procedure | CB Scheme
| Non-standard test method | N/A |

| Test Report Form No. | IEC60950_1F
| Test Report Form originator ... | SGS Fimko Ltd |
| Master TRF | Dated 2014-02 |

Copyright © 2014 Worldwide System for Conformity Testing and Certification of Electrotechnical Equipment and Components (IECEE), Geneva, Switzerland. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the IECEE is acknowledged as copyright owner and source of the material. IECEE takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

If this test Report is used by non-IECEE members, the IECEE/IEC logo and the reference to the CB Scheme procedure shall be removed.

This report is not valid as a CB Test Report unless signed by an approved CB Testing Laboratory and appended to a CB Test Certificate issued by an NCB in accordance with IECEE 02.

General disclaimer

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Issuing CB Testing Laboratory. The authenticity of this Test Report and its contents can be verified by contacting the NCB, responsible for this Test Report.
<table>
<thead>
<tr>
<th>Test item description</th>
<th>Switch Mode Power Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Mark</td>
<td>TDK-Lambda</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>TDK-LAMDA UK LTD</td>
</tr>
<tr>
<td></td>
<td>KINGSLEY AVE</td>
</tr>
<tr>
<td></td>
<td>ILFRACOMBE</td>
</tr>
<tr>
<td></td>
<td>DEVON</td>
</tr>
<tr>
<td></td>
<td>EX34 8ES UNITED KINGDOM</td>
</tr>
<tr>
<td>Model/Type reference</td>
<td>Series Alpha 800, Alpha 800W, CA800</td>
</tr>
<tr>
<td></td>
<td>Series Alpha 1000, Alpha 1000W, CA1000</td>
</tr>
<tr>
<td></td>
<td>CA1250 12C_MF_PP 12F_PP 12F_PP 12F_PP</td>
</tr>
<tr>
<td></td>
<td>CA1250 12C_MF 12FF 12FF 12FF</td>
</tr>
<tr>
<td></td>
<td>(see 'Model Differences' for details)</td>
</tr>
<tr>
<td>Ratings</td>
<td>94.5-240 Vac nominal, 133-328 V dc nominal</td>
</tr>
<tr>
<td></td>
<td>(85-264 Vac, 120-360 Vdc including tolerance)</td>
</tr>
<tr>
<td></td>
<td>16 A ac, 11 A dc</td>
</tr>
<tr>
<td></td>
<td>47-63Hz</td>
</tr>
<tr>
<td></td>
<td>(see 'Model Differences' for details)</td>
</tr>
</tbody>
</table>
Testing procedure and testing location:

<table>
<thead>
<tr>
<th>Testing Procedure</th>
<th>Testing location / address</th>
<th>Tested by (name + signature)</th>
<th>Approved by (name + signature)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB Testing Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associated CB Test Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Testing Procedure: TMP/CTF
Stage 1 | Testing location / address | Tested by (name + signature) | Approved by (name + signature) |
| Testing Procedure: WMT/CTF
Stage 2 | Testing location / address | Tested by (name + signature) | Witnessed by (name + signature) | Approved by (name + signature) |
| Testing Procedure: SMT/CTF
Stage 3 or 4 | Testing location / address: TDK-Lambda, Kingsley Avenue, Ilfracombe, EX34 8ES, UK | Tested by (name + signature): N. S. Marsh, S. Hirstwood | Approved by (name + signature): K. P. Tizzard | Supervised by (name + signature): David Snook |
| Testing Procedure: RMT | Testing location / address | Tested by (name + signature) | Approved by (name + signature) | Supervised by (name + signature) |

List of Attachments
- National Differences (50 pages)
- Enclosures (142 pages)

Summary Of Testing

Unless otherwise indicated, all tests were conducted at TDK-Lambda, Kingsley Avenue, Ilfracombe, EX34 8ES, UK.

Tests performed (name of test and test clause)
Testing location / Comments

TRF No. IEC60950_1F
This report issued under the responsibility of UL
General Guidelines

Heating (4.5.1, 1.4.12, 1.4.13)
Locked-Rotor Overload for DC Motors in Secondary Circuits (Annex B.7)

Summary of Compliance with National Differences:
Countries outside the CB Scheme membership may also accept this report.

List of countries addressed: AR, AT, AU, BE, BG, BY, CA, CH, CS, CZ, DE, DK, ES, EU, FI, FR, GB, GR, HU, IE, IL, IN, IT, JP, KR, MY, NL, NO, NZ, PL, PT, RO, SA, SE, SI, SK, UA, US, ZA

Copy of Marking Plate
The artwork below may be only a draft. The use of certification marks on a product must be authorized by the respective NCBs that own these marks.
Test item particulars:

<table>
<thead>
<tr>
<th>Equipment mobility</th>
<th>for building-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection to the mains</td>
<td>to be determined in the end application</td>
</tr>
<tr>
<td>Operating condition</td>
<td>continuous</td>
</tr>
<tr>
<td>Access location</td>
<td>for building-in</td>
</tr>
<tr>
<td>Over voltage category (OVC)</td>
<td>OVC II</td>
</tr>
<tr>
<td>Mains supply tolerance (%) or absolute mains supply values</td>
<td>85-264 Vac max, 120-360 Vdc max</td>
</tr>
<tr>
<td>Tested for IT power systems</td>
<td>Yes (Norway only)</td>
</tr>
<tr>
<td>IT testing, phase-phase voltage (V)</td>
<td>230</td>
</tr>
<tr>
<td>Class of equipment</td>
<td>Class I (earthed)</td>
</tr>
<tr>
<td>Considered current rating of protective device as part of the building installation (A)</td>
<td>20A</td>
</tr>
<tr>
<td>Pollution degree (PD)</td>
<td>PD 2</td>
</tr>
<tr>
<td>IP protection class</td>
<td>IP X0</td>
</tr>
<tr>
<td>Altitude of operation (m)</td>
<td>3000 m</td>
</tr>
<tr>
<td>Altitude of test laboratory (m)</td>
<td>64 m</td>
</tr>
<tr>
<td>Mass of equipment (kg)</td>
<td>3 kg max (depends on series)</td>
</tr>
</tbody>
</table>

Possible test case verdicts:

- test case does not apply to the test object | N/A
- test object does meet the requirement | P(Pass)
- test object does not meet the requirement | F(Fail)

Testing:

| Date(s) of receipt of test item | 2015-02-04 to 2015-02-17 |
| Date(s) of Performance of tests | 2015-02-18 to 2015-02-19 |

General remarks:

"(see Enclosure #)" refers to additional information appended to the report.
"(see appended table)" refers to a table appended to the report.

Throughout this report a point is used as the decimal separator.

Manufacturer's Declaration per Sub Clause 4.2.5 of IECEE 02:

The application for obtaining a CB Test Certificate includes more than one factory and a declaration from the Manufacturer stating that the sample(s) submitted for evaluation is (are) representative of the products from each factory has been provided

When differences exist, they shall be identified in the General Product Information section.

Name and address of Factory(ies):

<table>
<thead>
<tr>
<th>TDK-LAMBDA UK LTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINGSLEY AVE</td>
</tr>
<tr>
<td>ILFRACOMBE</td>
</tr>
<tr>
<td>DEVON</td>
</tr>
<tr>
<td>EX34 8ES UNITED KINGDOM</td>
</tr>
</tbody>
</table>
Report Summary
All applicable tests according to the referenced standard(s) have been carried out.

Product Description
The product is a modular switching power supply unit. A range of output modules can be mounted in 7 available slots. The primary sub-assembly, including the primary windings of the main barrier transformer, is common to all products in this family. The secondary regulators are built into separate modules and have flexible secondary windings attached to them. See also 'Model Differences'.

Model Differences
The Model Alpha 800 and Alpha 1000 Series Power Supplies are nearly electrically and mechanically identical. The difference between the two series relates to the fact that the Alpha 800 Series has a 800 W maximum output and the Alpha 1000 Series has a 1000 W maximum output. CA1250 models are special custom units which are identical to CA1000 except that they have a restricted input voltage range and 1250W output power.

Units may be marked with a Product Code: J1x or H1x for Alpha 1000 and J8 or H8 for Alpha 800, where x may be any number of characters.

Unit Configuration Code (Description :) may be prefixed by NS # followed by / or - (where # may be any number of characters indicating non- safety related model differences).

RATINGS & LIMITATIONS:

Max power & per converter 720W
Max. Ampere Turns per converter 120
Max. Ampere Turns (total) 200
Max number of secondary windings per converter 10
Max ambient 50°C
Maximum operating altitude 3000m

<table>
<thead>
<tr>
<th>Input voltage range/frequency</th>
<th>Max input</th>
<th>Max. ambient</th>
<th>Operating mode</th>
<th>Max. power</th>
<th>Max. output</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-99.9Vac, 47-63Hz</td>
<td>16A</td>
<td>45°C</td>
<td>Continuous</td>
<td>1000W</td>
<td></td>
</tr>
<tr>
<td>100-264Vac, 47-63Hz</td>
<td>16A</td>
<td>50°C</td>
<td>Continuous</td>
<td>1000W</td>
<td></td>
</tr>
<tr>
<td>85-264Vac, 47-63Hz</td>
<td>16A</td>
<td>50°C</td>
<td>Continuous</td>
<td>800W</td>
<td></td>
</tr>
<tr>
<td>120-360Vdc</td>
<td>11A</td>
<td>45°C</td>
<td>Continuous</td>
<td>800W</td>
<td></td>
</tr>
<tr>
<td>85-90Vac, 47-63Hz</td>
<td>16A</td>
<td>50°C</td>
<td>Intermittent</td>
<td>1000W</td>
<td></td>
</tr>
</tbody>
</table>

Intermittent: Duty cycle is 30 sec. max at up to 1000W output followed by 60 sec. min. at up to 800W output. Ampere Turns is sum of (Amperes x Number of Secondary Turns) for all outputs.
There are two converters in the PSU: one for module slots 1-5 and the other for slots 3-7.

The above ratings apply for all PSU mounting orientations. The ratings also apply whether or not input and/or output connector housings are fitted. Ratings apply to Alpha 800 and 1000 ranges unless otherwise stated.

When an MFPP option is fitted input voltage range is limited to 180 - 264Vac only.

The Alpha 800 or CA800 or Alpha 1000 or CA1000 Series may be followed by: LL, RL, TL, ML or nothing for a standard filter.

Where:

LL = Tiny leakage input filter.
RL = Reduced Leakage Input filter
TL = Low Leakage Input filter
ML = Medium leakage input filter

followed by up to seven of any of the following:

or B/S optionally followed by:

_MF, _X, _XL, MFL, MFE, MFU, MFV or _MFV, MFPF, MFT, _PA, _IN, _PP, _RP, RPA, RPB, RPC, RPD, _D, _MG or _CD

@/@ (/ can be replaced with a _) followed by: E, EB, EQ, EL, EH, H, P or PL:

where:

@ and @/@ = applicable voltage range and the following one or two letters are the module type.
_MF, MFE = Mains fail option (may also be called X).
MFU = Mains fail option with uncommitted output connections.
MFV = Mains fail option with VME bus
MFPF = Mains fail, module parallel, PSU/fan inhibit and 5V, 50mA auxiliary output
MFT = Mains fail, PSU/fan inhibit and 12V, 150mA auxiliary output
MFL, _XL = Mains fail latch
B/S = Blanking slot which occupies one 23mm slot.

Only up to Seven 23 mm slots may be filled up per unit, noting that all modules occupy one 23 mm slot except for AA, A, F, FF, G, J, K, R, S or T modules which occupy two 23 mm slots.

Valid voltage ranges for @ and @/@ for each module are as follows:

<table>
<thead>
<tr>
<th>Module</th>
<th>Voltage</th>
<th>Current (A)</th>
<th>Width (mm)</th>
<th>Occupied Slots</th>
<th>Ampere</th>
<th>Turns</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.5 - 6</td>
<td>60</td>
<td>46</td>
<td>2</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>AA</td>
<td>4.5 - 7</td>
<td>60</td>
<td>46</td>
<td>2</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>AL</td>
<td>4.75 - 5.3</td>
<td>60</td>
<td>46</td>
<td>2</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>BB</td>
<td>4.5 - 7</td>
<td>25</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>4.5 - 6</td>
<td>25</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>C, CC</td>
<td>5 - 16</td>
<td>16</td>
<td>23</td>
<td>1</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>CL</td>
<td>4.6 - 5.6</td>
<td>16</td>
<td>23</td>
<td>1</td>
<td>2</td>
<td>32</td>
</tr>
</tbody>
</table>

TRF No. IEC60950_1F This report issued under the responsibility of UL
A, AA and AL modules can be used up to 37A in slots 6 and 7 and used up to 60A in all other slots. B and BB modules can be used up to 15A in slot 7 and used up to 25A in all other slots.

(a) C CC, CL, CM & CH modules can be used up to 16A for outputs up to 12V. For 15-16V outputs C modules can be used at up to 12A. Maximum module output current derates linearly between 12V and 15V.

(b) C, CC, CL, CM & CH modules can be used up to 10A in slot 7 and up to 16A in all other slots, subject to the limitations of (a).

D & DD modules can be used at up to 9A at up to 24V in all slots. At greater than 24V D & DD modules can be used at up 8A in all slots.

E, EL & EH modules can be used up to 5A in slot 7 and up to 8A in all other slots.

EQ and EB modules can be used up to 5.6A in slot 7 and up to 9A in all other slots.

F modules can be used up to 20A in slots 6 and 7 and up to 33A in all other slots.

FF modules can be used up to 34.5A in all slots.

G & GG modules can be used up to 15A in slots 6 and 7 and up to 25A in all other slots.

H modules can be used up to 3A in slot 7 and up to 5A in all other slots. For 29.01 - 32V output current is limited to 1A max for all slots.

J & JJ modules can be used up to 6A in slots 6 and 7 (for 30-48V). For all other slots the max. permitted current is limited to 8A at 48V and 10A at 41V. For intermediate voltages interpolation is used to determine the max. permitted current. For outputs in the range 36-41V max. current is 10A.

K & KK modules can be used up to 10A in slot 6/7 and up to 15A in all other slots.

L & LL modules can be used up to 15A in slot 7 and used up to 25A in all other slots.

M & MM modules can be used up to 5A in slot 7 and up to 8A in all other slots.

(a) N & NN modules can be used up to 5A for outputs up to 29V. For 29-32V output current is limited to 1A max.

(b) N & NN modules can be used up to 3A in slot 7 and up to 5A in all other slots.

P and PL modules can be used up to 5A in the 18-29V channel in slots 1 to 6 and up to 3A in slot 7. P and PL modules can be used up to 8A in the 5-16V channel in slots 1 to 6 and up to 5A in slot 7.
Q & QQ modules can be used up to 25A in any slot.
R & RR modules can be used up to 60A in any slot.
S & SS modules can be used up to 75A in slots 1/2, 76A in slots 2/3; 51A in slots 6/7 and up to 85A in all other slots. When the PSU is operated in a horizontal orientation (with the ratings label uppermost) the S & SS modules may be used up to 85A in slots 2/3.
T & TT modules can be used up to 37A in slot 6 and 7 and used up to 60A in all other slots.
U & UU modules can be used up to 16A in all slots.
W & WW modules can be used up to 15A in all slots.
Z & ZZ modules can be used up to 15A in slot 7 and used up to 25A in all other slots.

Secondary Options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG</td>
<td>Provides a module good signal with indicates output voltage is within limits.</td>
</tr>
<tr>
<td>PA</td>
<td>Forces paralleled modules to share load current. Additionally it also provides the module good signal.</td>
</tr>
</tbody>
</table>
| PP | Provides either of the following functions:
| | a) Reduces module current limit and caters for paralleled modules with busbar linking. For use with modules providing a max output of up to 16V only; or
| | b) Identical to _PA except that the module is paralleled at the output of the module with busbar linking. |
| IN | Provides an external signal which may be used to inhibit the output of the module. |
| EN | Provides a delay in the turn on time of a module output. Additionally allows an external signal voltage to enable a module output (output off when no signal applied). |
| RP | Provides remote programming of the module output voltage. |
| RPA | Provides voltage programming of the module output voltage only. |
| RPB | Provides voltage programming of the module output voltage and has an output VA limiting circuit. |
| RPC | Provides an output VA limiting circuit. |
| RPD | Provides voltage programming of the module output voltage and has an output VA limiting circuit. |
| D | Delay option. Provides a delay in the turn on time of the output. |

Note:
The RPA option can only be used on modules with output voltages rated up to 32V.
The RP, RPB, RPC and RPD options can only be used on modules with output voltages rated up to 16V.
Not for use with a module voltage range of 18-29V or twin output modules.

Custom Models:

Model: CA1000LSF 5.25B 12.7C 16/16E 24G 18D 18D (NS-FOSS-002)
Input: 90 - 264Vac, 47-63Hz
Max. Output(s): 6V, 3A; 13.7V, 9A; 16V, 0.5A; 16V, 0.5A; 25V, 25A; 19V, 2.5A; 19V, 2.5A (877.3W)
Max. Ambient: 40°C
Orientation: Vertical with airflow upwards

CA1000RA B/S_MF 5S_PP 5B_PP 12F (NS-AMD-001)
Input voltage range: 198 - 264Vac.
Outputs: S Module: 5.5V max., 80A max.
B Module: 5.5V max., 25A max.
F Module: 12.5V max., 33A max.
All orientations are permitted.

CA1000 B/S_MF 24G_PP 24D_PP 15/15E 5M_IN
Input voltage range: 90 - 264Vac.
Outputs: G Module: 24V max., 20A max.
D Module: 24V max., 8A max.
E Module: 15/15V max., 8/6A max.
N Module: 5V max., 8A max.
Permitted orientation: Vertical with the fans lowest.
Fans: Papst 612NGM (lower airflow than fans fitted to standard Alpha 800/1000 PSUs).

CA1000 LSF B/S_MF 24G 15/15E 5M_IN (NS-TEG-010)
Input voltage range: 85 - 264Vac.
Outputs: G Module: 24V max., 20A max.
E Module: 15/15V max., 4/4A max.
M Module: 5V max., 8A max.
Permitted orientation: Horizontal
Fans: Papst 612NML or 612NGML (lower airflow than fans fitted to standard Alpha 800/1000 PSUs).

CA1000 LSF B/S_MF 24G 15/15E 5M_IN 36J (NS-TEG-011)
Input voltage range: 85 - 264Vac.
Outputs: G Module: 24V max., 18A max.
E Module: 15/15V max., 3/3A max.
M Module: 5V max., 8A max.
J Module: 36V max., 5.5A max.
Permitted orientation: Horizontal
Fans: Papst 612NML or 612NGML (lower airflow than fans fitted to standard Alpha 800/1000 PSUs).

CA1250 12C_MF_PP 12F_PP 12F_PP 12F_PP (NS-AMD-002)
Input voltage range: 207 - 264Vac.
Outputs: C Module: 13V max., 16A max.
F Module: 13V max., 30A max.
F Module: 13V max., 30A max.
F Module: 13V max., 30A max.
Permitted orientation: All except vertical with airflow downwards.

CA1250 12C_MF 12FF 12FF 12FF (NS-AMD-005)
Input voltage range: 207 - 264Vac.
Outputs: C Module: 13V max., 16A max.
F Module: 13V max., 30A max.
F Module: 13V max., 30A max.
F Module: 13V max., 30A max.
Permitted orientation: Horizontal only.

CA1000 LFSL 22K_IN 12C-IN 48J-IN 24N_IN 24N_IN (J10077A)
Input voltage range: 90 - 264Vac.
Outputs: K Module: 22V max., 15A max.
C Module: 12V max., 10A max.
J Module: 48V max., 5A max.
N Module: 24V max., 5A max.
N Module: 24V max., 5A max.
Permitted orientation: Horizontal only.
Max. Ambient: 40°C
Fans: Papst 612NGME or 612NME (lower airflow than fans fitted to standard Alpha 800/1000 PSUs).

Additional Information
This report is a reissue of CBTR Ref. No: E135494-A56-CB-2 dated 2012-12-03 including amendments and
corrections with CB certificate Ref. No: DK-29555-UL dated 2012-12-03 to upgrade to IEC 60950-1 2nd Edition + Amd 2. Additionally covers change of factory name, from Trio Engineering Co Ltd to Panyu Trio Microtronic Co. Ltd. Based on previously conducted testing and the review/update of product technical documentation including photos, schematics, wiring diagrams and similar, it has been determined that the product continues to comply with the standard. Only the tests listed below were deemed necessary.

(4.5) Thermal for new non-standard (J10077A) which uses a quiet fan.
(B.7) Locked rotor for EBM-PAPST 612NMGE fan.

This report is a reissue of CBTR Ref. No. E135494-A56-CB-1 to CBTR Ref. No. E135494-A56-CB-1 am. 1, CB Test Certificate Ref. No DK-17755-A1 dated 2011-01-25 to upgrade to IEC 60950-1:2005 + A1:2009. Based on the previously conducted testing and the review of product technical documentation including photos, schematics, wiring diagrams and similar, and on limited testing (Annex B.7 DC Fan Locked Rotor test) it has been determined that the product continues to comply with the standard. The following revisions were made during this upgrade: Critical Components table (renumbering of fuses FS1 to FS101, F2 to FS1, and addition of alternate FS101 & FS1); updating the Handbook (manual), Licenses and Transformer drawings in enclosures; removed one Factory location (TDK-Lambda Germany).

These products use optional coatings which are normally applied with a brush and are used within the primary area of the power supply on limited surface therefore deemed as non-safety critical. The coatings are not used for any safety purpose although they improve dielectric strength.

Technical Considerations
- The product was submitted and evaluated for use at the maximum ambient temperature (Tma) permitted by the manufacturer’s specification of: 50°C or 45°C (See ‘Products Covered’ enclosure).
- The product is intended for use on the following power systems: TN --
- The equipment disconnect device is considered to be: evaluated in the end-use application --
- The following were investigated as part of the protective earthing/bonding: Printed wiring board trace (refer to Enclosure - Schematics + PWB for layouts) --
- The product was investigated to the following additional standards: EN 60950-1:2006 + A1:2010 + A11:2009 + A12:2011 +A2:2013 (which includes all european national differences, including those specified in this test report). --

Engineering Conditions of Acceptability
When installed in an end-product, consideration must be given to the following:
- The Clearances and Creepage Distances have additionally been assessed for suitability up to 3000 m elevation. --
- Additional requirements may apply if product used in end application in Restricted Access Location. -
- The following secondary output circuits are SELV: Outputs can be connected in series thus producing non-SELV levels, and this must be taken into account in the end-use application. When non-seriessed outputs are earthed in the end use equipment they are SELV. If the outputs are not earthed they must be considered hazardous, as a single fault in the secondary may make them exceed the SELV limits between output and earth. If any output is non-SELV then all outputs become non-SELV. Additional evaluation may be needed in end product --
- The following secondary output circuits are at hazardous energy levels: modules A, AA, AL, C, CC, CH, D, DD, F, FF, G, GG, J, JJ, K, KK, R, RR, S, SS, T, TT, U and UU --
The following secondary output circuits are at non-hazardous energy levels: modules B, BB, CL, CM, E, EB, EH, EL, EQ, H, L, LL, M, MN, N, NN, P, PL, Q, QQ, W, WW, Z and ZZ --

The power supply terminals and/or connectors are: Not investigated for field wiring --

The maximum investigated branch circuit rating is: 20 A --

The investigated Pollution Degree is: 2 --

Proper bonding to the end-product main protective earthing termination is: Required --

The following magnetic devices (e.g. transformers or inductor) are provided with an OBJY3 insulation system with the indicated rating greater than Class A (105°C): T202 (Class F), T302 (Class F), T4/T1 (Class F or Class A optional - refer to CCL) --

The end-product Electric Strength Test is to be based upon a maximum working voltage of: Primary-Earthed Dead Metal: 360 Vrms, 384 Vpk, Primary-SELV: 377 Vrms, 824 Vpk --

The following end-product enclosures are required: Mechanical, Electrical, Fire --

The following output terminals were referenced to earth during performance testing: Both the positive and negative outputs in turn were earthed to determine the worst case. --

An investigation of the protective bonding terminals has: Not been conducted --

The following input terminals/connectors must be connected to the end-product supply neutral: Neutral terminal --

The following Production-Line tests are conducted for this product: Earthing Continuity, Electric Strength --

These units are forced-air cooled. They require a minimum of 50mm clearance in the vicinity of the ventilation holes --

Fans: The fans provided in this sub-assembly are not intended for operator access. --

Abbreviations used in the report:

- normal condition ... N.C.
- single fault condition S.F.C
- operational insulation OP
- basic insulation .. BI
- basic insulation between parts of opposite polarity: BOP
- supplementary insulation SI
- double insulation ... DI
- reinforced insulation RI

Indicate used abbreviations (if any)