

Programmable DC Power Supplies 5kW in 2U Built in RS-232 & RS-485 Interface Advanced Parallel Operation

Optional Interface: LXI Compliant LAN IEEE488.2 SCPI (GPIB) Multi-Drop Isolated Analog Programming

TDK-Lambda

GENERAL SAFETY INFORMATION

READ SAFETY INSTRUCTIONS

The following safety precautions must be observed during all phases of operation, service and repair of this equipment. Failure to comply with the safety precautions or warnings presented in this document violates safety standards of design, manufacture and intended use of this equipment and may impair the built-in protections within. TDK-Lambda shall not be liable for user's failure to comply with these requirements.

SERVICING

These products are not customer serviceable. Parts substitutions and modifications are by authorized TDK-Lambda service personnel only. For repairs or modifications, the product must be returned to TDK-Lambda service facility.

CRITICAL COMPONENTS

These products are not authorized for use as critical components in nuclear control systems, life support systems or equipment for use in hazardous environments without the express written approval of the Managing Director of TDK-Lambda Ltd.

PRODUCT USAGE

These products are designed for use as standalone equipment within the limits described in the user manual. They are not designed for general home or consumer use, and are designed for indoor use.

ENVIRONMENTAL

These products are IP20, and therefore chemicals/solvents, cleaning agents and other liquids must not be used.

ENVIRONMENT

These products are designed for use within a Pollution Degree 2, Overvoltage Category II environment, and must be operated within the environmental conditions (temperature, altitude, etc.) specified in the user manual.

OUTPUT LOADING

The output power taken from the product must not exceed the rating stated on the product label, except as stated in the user manual. The insulation of the wire connected to the DC output should be in accordance with the output load current and voltage.

INPUT PARAMETERS

These products must be operated within the input parameters stated in the user manual. The means of connecting this equipment to the supply must only be according to the instructions specified in the user manual to reduce risk of hazard. **Connection to AC MAINS must be done by an electrical or other gualified personnel.**

END OF LIFE DISPOSAL

The product contains components that require special disposal. Make sure that the unit is properly disposed of at the end of its service life and in accordance with local regulations.

EQUIPMENT OPERATION AND OPERATING CONTROLS

Identification and description of operating controls and their use in all operating modes are stated in the user manual. Operating of the equipment is explained in detail in the user manual.

VENTILATION

The ventilation openings on these products must not be covered. Ensure that there is at least 10cm spacing between any obstruction and the ventilation openings.

INPUT AND OUTPUT CABLES

Must use cables with the appropriate voltage and temperature ratings to ensure safe, reliable operation.

ACCESSORIES

Only accessories which meet the manufacturer's specifications shall be used. For identification and instructions for connection of accessories, refer to the user manual.

HANDLING, LIFTING AND CARRYING

Handling, lifting and carrying of the equipment shall be made only according to the instructions specified in the user manual to avoid potential personal injury.

DISCONNECT DEVICE

A circuit breaker with current ratings as specified in the user manual is the main disconnect device of the equipment which reliably shuts off the supply from the equipment. The positioning of the equipment must not make it difficult to operate the disconnect device. The device must be marked as the disconnecting device for the equipment.

NOTE: The switch incorporated in the equipment does NOT act as a main disconnect device and does not cut the supply or power from the equipment. It is added as a means to shut down certain circuits inside the power supply such as the display and the output circuit.

INSTALLATION

Installation of the equipment or the system incorporating the equipment must be in accordance with the installation instructions provided by the manufacturer. The safety of any system incorporating the equipment is the responsibility of the assembler.

IMPROPER USAGE OF THE EQUIPMENT

If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

RACK MOUNTING SAFETY INSTRUCTIONS

- A) Elevated Operating Ambient If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature (Tma)specified by the manufacturer.
- B) Reduced Air Flow Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.
- C) Mechanical Loading Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.
- D) Circuit Overloading Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on overcurrent protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.
- E) Reliable Earthing Reliable earthing of rack-mounted equipment should be maintained. Particular attention should be given to supply connections other than direct connections to the branch circuit (e.g. use of power strips).

USERS

This equipment must be operated only by qualified personnel who understand the instructions and safety manuals provided with the equipment. If the equipment must be operated by an unqualified personnel, then he/she must be supervised by a qualified personnel.

High Voltage Warning

Dangerous voltages are present within the power supply. To avoid injuries, always disconnect power, discharge circuits and remove external voltage sources before touching components.

Class I Warning

The unit is Class I product. To minimize electrical shock hazard, the unit must be reliably earthed and professionally installed. Any interruption of the protective ground conductor or disconnection of the protective earth terminal will cause a potential shock hazard that might cause personal injury. Energy Hazards Warning: The main output of the unit is hazardous energy (240VA) and must not be user accessible in the end application.

Hazardous output Warning

There is a potential shock hazard when using a power supply with an output voltage greater than 60VDC. Do not turn ON power supply when output voltage is above 60VDC without output bus-bars/or output connectors protection assembled. Turn OFF power supply or disconnect power supply from AC mains before making or changing any rear panel connection.

Internal fuse Caution

Internal fuse protects the unit and must not be replaced by the user. In case of internal defect, the unit must be returned to TDK-Lambda Ltd. or one of their authorized agents.

INFORMAZIONI GENERALI DI SICUREZZA

LEGGERE LE ISTRUZIONI DI SICUREZZA

Le seguenti precauzioni di sicurezza devono essere osservate durante tutte le fasi del funzionamento, della manutenzione e della riparazione di questa apparecchiatura. Una mancanza a rispettare gli avvertimenti o le precauzioni di sicurezza presentati in questo documento viola gli standard di sicurezza della progettazione, della fabbricazione e della destinazione d'uso di questa apparecchiatura e può danneggiare le protezioni integrate al suo interno. TDK-Lambda non sarà responsabile per un mancato rispetto di questi requisiti da parte dell'utente.

MANUTENZIONE

La manutenzione di questi prodotti non può essere eseguita dal cliente. Le sostituzioni e le modifiche delle parti possono essere eseguite solo da personale di servizio autorizzato di TDK-Lambda. Per riparazioni e modifiche, il prodotto deve essere restituito alla struttura di manutenzione di TDK- Lambda.

COMPONENTI CRITICI

Non è autorizzato l'uso di questi prodotti come componenti critici in sistemi di controllo nucleari, sistemi di supporto vitale o apparecchiatura da usare in ambienti pericolosi senza l'approvazione scritta esplicita dell'amministratore delegato di TDK-Lambda Ltd.

USO DEL PRODOTTO

Questi prodotti sono progettati per essere usati come apparecchiatura autonoma nei limiti descritti nel manuale dell'utente. Non sono progettati per uso del consumatore o domestico generale, e sono progettati per uso in ambienti interni.

AMBIENTALE

Questi prodotti sono IP20, e di conseguenza non devono essere usati prodotti chimici/solventi, detergenti e altri liquidi.

AMBIENTE

Questi prodotti sono progettati per uso in un ambiente con livello di inquinamento 2, categoria di sovratensione II, e devono essere azionati nelle condizioni ambientali (temperatura, altitudine, etc.) specificate nel manuale dell'utente.

CARICO DI USCITA

La potenza di uscita dal prodotto non deve superare la potenza nominale indicata sulla targhetta del prodotto, fatto salvo come specificato nel manuale dell'utente. L'isolamento del cavo collegato all'uscita CC deve essere conforme alla corrente e alla tensione del carico di uscita.

PARAMETRI DI ALIMENTAZIONE

Questi prodotti devono essere azionati nei limiti dei parametri di alimentazione indicati nel manuale dell'utente. I mezzi per collegare questa apparecchiatura all'alimentazione devono essere solo in conformità con le istruzioni specificate nel manuale dell'utente per ridurre il rischio di pericolo. <u>Il collegamento all'alimentazione CA deve essere eseguito da un elettricista o da altro personale qualificato.</u>

SMALTIMENTO A FINE VITA

Il prodotto contiene componenti che richiedono uno smaltimento speciale. Accertarsi che l'unità sia smaltita adeguatamente alla fine della sua vita utile e in conformità con le normative locali.

AZIONAMENTO DELL'APPARECCHIATURA E COMANDI

L'identificazione e la descrizione dei comandi e il loro uso in tutte le modalità operative sono specificate nel manuale dell'utente. L'azionamento dell'apparecchiatura è spiegato nei dettagli nel manuale dell'utente.

VENTILAZIONE

Le aperture di ventilazione su questi prodotti non devono essere coperte. Assicurarsi che ci siano almeno 10 cm di spazio fra un'ostruzione e le aperture di ventilazione.

CAVI DI ALIMENTAZIONE E DI USCITA

È necessario utilizzare cavi con la tensione e la temperatura nominale appropriati per assicurare un funzionamento sicuro e fidato.

ACCESSORI

Devono essere usati solo accessori che sono conformi alle specifiche del produttore. Per identificazione e istruzioni per il collegamento di accessori, vedere il manuale dell'utente.

MOVIMENTAZIONE, SOLLEVAMENTO E TRASPORTO

La movimentazione, il sollevamento e il trasporto dell'apparecchiatura devono essere eseguiti solo in conformità con le istruzioni specificate nel manuale dell'utente per evitare una potenziale ferita personale.

DISPOSITIVO DI DISATTIVAZIONE

Un interruttore di circuito con i valori di corrente specificati nel manuale dell'utente è il dispositivo di disattivazione principale dell'apparecchiatura che interrompe l'alimentazione dall'apparecchiatura in modo affidabile. Il posizionamento dell'apparecchiatura non deve causare difficoltà all'azionamento del dispositivo di disattivazione. Il dispositivo deve essere contrassegnato come dispositivo di disattivazione per l'apparecchiatura.

NOTA: l'interruttore incorporato nell'apparecchiatura NON agisce come dispositivo di disattivazione principale e non interrompe l'alimentazione o la corrente dall'apparecchiatura. È aggiunto come mezzo per interrompere determinati circuiti all'interno dell'alimentatore come il display e il circuito di uscita.

INSTALLAZIONE

L'installazione dell'apparecchiatura o del sistema che incorpora l'apparecchiatura deve essere eseguita in conformità con le istruzioni di installazione fornite dal produttore. La sicurezza di un sistema che incorpora l'apparecchiatura è responsabilità dell'assemblatore.

USO IMPROPRIO DELL'APPARECCHIATURA

Se l'apparecchiatura è usata in un modo non specificato dal produttore, la protezione fornita dall'apparecchiatura può essere compromessa.

ISTRUZIONI DI SICUREZZA DEL MONTAGGIO IN RACK

- A) Ambiente di esercizio elevato Se installata in un gruppo chiuso o in un rack con più unità, la temperatura ambiente di esercizio dell'ambiente rack potrebbe essere maggiore rispetto a quella della stanza. Di conseguenza, occorre prendere in considerazione l'installazione dell'apparecchiatura in un ambiente compatibile con la temperatura ambiente massima (Tma) specificata dal produttore.
- B) Flusso d'aria ridotto L'installazione dell'apparecchiatura in un rack deve essere tale da non compromettere la quantità di flusso d'aria necessaria per un funzionamento sicuro dell'apparecchiatura.
- C) Carico meccanico Il montaggio dell'apparecchiatura nel rack deve essere tale da non creare una condizione di pericolo a causa di un carico meccanico non omogeneo.
- D) Sovraccarico del circuito È necessario valutare il collegamento dell'apparecchiatura al circuito di alimentazione e l'effetto che il sovraccarico dei circuiti potrebbe avere sulla protezione da sovracorrente e il cablaggio di alimentazione. È necessario prendere in appropriata considerazione i valori nominali di targa dell'apparecchiatura quando si affronta questo problema.
- E) Messa a terra affidabile Deve essere mantenuta una messa a terra affidabile dell'apparecchiatura montata su rack. Deve essere prestata particolare attenzione ai collegamenti di alimentazione diversi dai collegamenti diretti al circuito di derivazione (per esempio uso di prese multiple).

UTENTI

Questa apparecchiatura deve essere azionata solo da personale qualificato che capisce le istruzioni e i manuali di sicurezza forniti con l'apparecchiatura. Se l'apparecchiatura deve essere azionata da personale non qualificato, questo deve essere sotto la supervisione di personale qualificato.

RISCHIO DI SCOSSA ELETTRICA

Avvertimento di Alta Tensione

Nell'alimentatore sono presenti tensioni pericolose. Per evitare ferite, staccare sempre l'elettricità, scaricare i circuiti e rimuovere fonti esterne di tensione prima di toccare componenti.

Avvertimento di Classe I

L'unità è un prodotto di Classe I. Per ridurre al minimo il pericolo di scossa elettrica, l'unità deve essere collegata a terra in modo affidabile e installata in modo professionale. Qualsiasi interruzione del conduttore di messa a terra di protezione o scollegamento del terminale di terra di protezione causerà un pericolo potenziale di scossa elettrica che può causare una ferita personale. Avvertimento di rischi elettrici: L'uscita principale dell'unità è energia pericolosa (240VA) e non deve essere accessibile all'utente nell'applicazione finale.

Avvertimento di uscita pericolosa

C'è un pericolo potenziale di scossa quando si usa un alimentatore con una tensione in uscita superiore a 60 VCC. Non accendere l'alimentatore quando la tensione in uscita è superiore a 60 VCC senza una protezione con sbarre collettrici o connettori di uscita montati. Spegnere l'alimentatore o staccarlo dall'alimentazione CA prima di fare o modificare un collegamento del pannello posteriore.

Avviso di fusibile interno

Il fusibile interno protegge l'unità e non deve essere sostituito dall'utente. In caso di difetto interno, l'unità deve essere restituita a TDK-Lambda Ltd. o a uno dei suoi agenti autorizzati.

INFORMACIÓN GENERAL DE SEGURIDAD

LEA LAS INSTRUCCIONES DE SEGURIDAD

Se deben observar las siguientes precauciones de seguridad durante todas las fases de operación, servicio y reparación de este equipo. El incumplimiento de las precauciones de seguridad o advertencias presentadas en este documento viola los estándares de seguridad de diseño, fabricación y uso previsto de este equipo y puede afectar las protecciones integradas en su interior. TDK-Lambda no se hace responsable por el incumplimiento de estos requisitos por parte del usuario.

SERVICIO

Estos productos no pueden ser reparados por el cliente. Las sustituciones y modificaciones de piezas son realizadas únicamente por personal de servicio autorizado de TDK-Lambda. Para efectuar reparaciones o modificaciones, el producto debe devolverse al centro de servicio de TDK-Lambda.

COMPONENTES CRÍTICOS

Estos productos no están autorizados para ser usados como componentes críticos en sistemas de control nuclear, sistemas de soporte vital o equipos para uso en entornos peligrosos, sin la aprobación expresa por escrito del Director Gerente de TDK-Lambda Ltd.

USO DEL PRODUCTO

Estos productos están diseñados para usarse como equipo autónomo dentro de los límites descriptos en el manual de seguridad e instalación. No están diseñados para uso doméstico o de consumo general, y están diseñados para uso en interiores.

MEDIOAMBIENTAL

Estos productos son IP20 y, por lo tanto, no deben utilizarse productos químicos/solventes, agentes de limpieza y otros líquidos.

AMBIENTE

Estos productos están diseñados para su uso en un entorno de Grado de Contaminación 2, Categoría de Sobretensión II, y deben utilizarse dentro de las condiciones ambientales (temperatura, altitud, etc.) especificadas en el manual de seguridad e instalación.

CARGA DE SALIDA

La potencia de salida tomada del producto no debe exceder el valor nominal indicado en la etiqueta del producto, excepto por lo indicado en el manual de seguridad e instalación. El aislamiento del cable conectado a la salida de CC debe estar de acuerdo con la corriente y el voltaje de carga de salida.

PARÁMETROS DE ENTRADA

Estos productos deben operarse dentro de los parámetros de entrada indicados en el manual de seguridad e instalación. Los medios para conectar este equipo al suministro deben ser únicamente de acuerdo con las instrucciones especificadas en el manual de seguridad e instalación para reducir el riesgo de peligro. La conexión a la red eléctrica de CA debe ser efectuada por un electricista u otro personal calificado.

ELIMINACIÓN AL FINAL DE LA VIDA ÚTIL

El producto contiene componentes que requieren una eliminación especial. Asegúrese de que la unidad se deseche correctamente al final de su vida útil y de acuerdo con las normas locales.

OPERACIÓN DEL EQUIPO Y CONTROLES DE OPERACIÓN

La identificación y descripción de los controles de operación y su uso en todos los modos operativos se indican en el manual del usuario. El funcionamiento del equipo se explica en detalle en el manual del usuario.

VENTILACIÓN

Las aberturas de ventilación de estos productos no deben cubrirse. Asegúrese de que haya al menos 10 cm de espacio entre cualquier obstrucción y las aberturas de ventilación.

CABLES DE ENTRADA Y SALIDA

Debe utilizar cables con los valores de voltaje y temperatura adecuados para garantizar un funcionamiento seguro y confiable.

ACCESORIOS

Solo se utilizarán accesorios que cumplan con las especificaciones del fabricante. Para la identificación e instrucciones para la conexión de accesorios, consulte el manual de seguridad e instalación.

MANIPULACIÓN, ALZADO Y TRANSPORTE

La manipulación, alzado y transporte del equipo debe realizarse únicamente de acuerdo con las instrucciones especificadas en el manual de seguridad e instalación para evitar posibles lesiones personales.

DISPOSITIVO DE DESCONEXIÓN

Un disyuntor con valores nominales de corriente especificados en el manual de seguridad e instalación constituye el dispositivo de desconexión principal del equipo que corta de manera confiable el suministro de energía del equipo. La ubicación del equipo no debe dificultar el funcionamiento del dispositivo de desconexión. El dispositivo debe estar marcado como dispositivo de desconexión del equipo.

NOTA: El interruptor incorporado en el equipo NO actúa como un dispositivo de desconexión principal y no corta el suministro o la energía del equipo. Se agrega como un medio para apagar ciertos circuitos dentro de la fuente de alimentación, tales como la pantalla y el circuito de salida.

INSTALACIÓN

La instalación del equipo o del sistema que incorpora el equipo debe realizarse de acuerdo con las instrucciones de instalación proporcionadas por el fabricante. La seguridad de cualquier sistema en el cual el equipo es incorporado es responsabilidad del ensamblador.

USO INADECUADO DEL EQUIPO

Si el equipo se utiliza de una manera no especificada por el fabricante, la protección proporcionada por el equipo puede verse afectada.

INSTRUCCIONES DE SEGURIDAD PARA MONTAJE EN BASTIDOR

- A) Temperatura ambiente de funcionamiento elevada si se instala en una unidad de bastidor cerrado o de unidades múltiples, la temperatura ambiente de funcionamiento del entorno del bastidor puede ser mayor que la temperatura ambiente de la habitación. Por lo tanto, se debe considerar instalar el equipo en un entorno compatible con la temperatura ambiente máxima (Tma) especificada por el fabricante.
- B) Flujo de aire reducido la instalación del equipo en un bastidor debe ser tal que la cantidad de flujo de aire requerida para el funcionamiento seguro del equipo no se vea comprometida.
- C) Carga mecánica el montaje del equipo en el bastidor debe ser tal que no se provoque una condición peligrosa debido a una carga mecánica desigual.
- D) Sobrecarga del circuito se debe considerar la conexión del equipo al circuito de suministro y el efecto que la sobrecarga de los circuitos podría tener sobre la protección contra sobrecorriente y el cableado de suministro. Se deben considerar de manera apropiada los valores nominales incluidos en la placa de identificación del equipo al abordar este asunto.
- E) Conexión confiable a tierra se debe mantener una conexión confiable a tierra del equipo montado en bastidor. Se debe prestar especial atención a las conexiones de suministro que no sean conexiones directas al circuito derivado (por ejemplo, uso de regletas de enchufes).

USUARIOS

Este equipo debe ser operado únicamente por personal calificado que comprenda las instrucciones y los manuales de seguridad proporcionados con el equipo. Si el equipo debe ser operado por personal no calificado, entonces éste deberá ser supervisado por personal calificado.

RIESGO DE DESCARGA ELÉCTRICA

Advertencia de Alto Voltaje

Hay voltajes peligrosos dentro de la fuente de alimentación. Para evitar lesiones, siempre desconecte la energía, descargue los circuitos y retire las fuentes de voltaje externas antes de tocar los componentes.

Advertencia de Clase I

La unidad es un producto de Clase I. Para minimizar el riesgo de descarga eléctrica, la unidad debe estar conectada a tierra de manera confiable e instalada por un profesional. Cualquier interrupción del conductor de tierra de protección o desconexión del terminal de tierra de protección, causará un riesgo potencial de descarga eléctrica que podría causar lesiones personales. Advertencia de peligros energéticos: La salida principal de la unidad constituye energía peligrosa (240 VA) y no debe ser accesible al usuario en la aplicación final.

Advertencia de Salida Peligrosa

Existe un riesgo potencial de descarga eléctrica cuando se utiliza una fuente de alimentación con un voltaje de salida superior a 60 V CC. No encienda la fuente de alimentación cuando el voltaje de salida sea superior a 60 VCC sin que las barras colectoras de salida o la protección de los conectores de salida estén ensamblados. Apague la fuente de alimentación o desconecte la fuente de alimentación de la red de CA antes de realizar o cambiar cualquier conexión del panel trasero.

Precaución del Fusible Interno

El fusible interno protege la unidad y no debe ser reemplazado por el usuario. En caso de defecto interno, la unidad debe devolverse a TDK-Lambda Ltd. o a uno de sus agentes autorizados.

INFORMATIONS GÉNÉRALES DE SÉCURITÉ

LIRE LES INSTRUCTIONS DE SÉCURITÉ

Les précautions de sécurité suivantes doivent être observées durant toutes les phases de fonctionnement, d'entretien et de réparation de cet équipement. Le non-respect des précautions de sécurité ou des avertissements présentés dans ce document enfreint les normes de sécurité de conception, de fabrication et d'utilisation prévue de cet équipement et peut altérer les protections qui y sont intégrées. TDK-Lambda ne pourra être tenu responsable en cas de non-respect de ces exigences par l'utilisateur.

ENTRETIEN

Ces produits ne sont pas réparables par le client. Seul le personnel de service autorisé de TDK-Lambda peut procéder au remplacement ou au changement des pièces. Pour les réparations ou les changements, le produit doit être retourné au centre de service TDK-Lambda.

COMPOSANTS CRUCIAUX

Ces produits ne sont pas autorisés pour une utilisation en tant que composants cruciaux dans les systèmes de contrôle nucléaire, les systèmes de survie ou les équipements destinés à être utilisés dans des environnements dangereux sans l'autorisation écrite expresse du directeur général de TDK-Lambda Ltd.

UTILISATION DU PRODUIT

Ces produits sont conçus pour être utilisés en tant qu'équipement autonome dans les limites décrites dans le manuel de l'utilisateur. Ils ne sont pas destinés à un usage domestique général ou à une consommation courante, et sont conçus pour une utilisation en intérieur.

ENVIRONNEMENTAL

Ces produits sont IP20, et par conséquent, les produits chimiques/solvants, les produits de nettoyage et autres liquides ne doivent pas être utilisés.

ENVIRONNEMENT

Ces produits sont conçus pour être utilisés dans un environnement de degré de pollution 2, catégorie de surtension II, et doivent être utilisés dans les conditions environnementales (température, altitude, etc.) spécifiées dans le manuel d'utilisation.

CHARGE DE SORTIE

La puissance de sortie provenant du produit ne doit pas dépasser la valeur nominale indiquée sur l'étiquette du produit, sauf indication contraire dans le manuel d'utilisation. L'isolation du fil connecté à la sortie CC doit être conforme au courant et à la tension de charge de sortie.

PARAMÈTRES D'ENTRÉE

Ces produits doivent être utilisés dans le respect des paramètres d'entrée indiqués dans le manuel d'utilisation. Les moyens de connexion de cet équipement à l'alimentation électrique doivent être conformes aux instructions spécifiées dans le manuel d'utilisation afin de réduire les risques de danger. La connexion au SECTEUR AC doit être effectuée par un électricien ou une autre personne qualifiée.

ÉLIMINATION EN FIN DE VIE

Le produit contient des composants nécessitant une élimination spéciale. Veillez à ce qu'il soit éliminé comme il se doit à la fin de sa durée de vie et conformément aux règlements locaux.

FONCTIONNEMENT DE L'ÉQUIPEMENT ET COMMANDES DE FONCTIONNEMENT

L'identification et la description des commandes de fonctionnement ainsi que leur utilisation dans tous les modes d'exploitation sont décrites dans le manuel d'utilisation. Le fonctionnement de l'équipement est expliqué en détail dans ce manuel.

VENTILATION

Les orifices de ventilation de ces produits ne doivent pas être couverts. Veillez à ce qu'il y ait un espace d'au moins 10 cm entre toute entrave et les orifices de ventilation.

CÂBLES D'ENTRÉE ET DE SORTIE

Les câbles doivent être utilisés avec la tension et la température nominales appropriées pour assurer un fonctionnement sûr et fiable.

ACCESSOIRES

Seuls des accessoires conformes aux spécifications du fabricant seront utilisés. Pour l'identification et les instructions de connexion des accessoires, consultez le manuel d'utilisation.

MANIPULATION, LEVAGE ET TRANSPORT

La manipulation, le levage et le transport de l'équipement seront effectués uniquement conformément aux instructions spécifiées dans le manuel d'utilisation afin d'éviter d'éventuelles blessures.

DISPOSITIF DE DÉCONNEXION

Un disjoncteur, dont les données limites de courant sont telles que spécifiées dans le manuel d'utilisation, est le dispositif principal de déconnexion de l'équipement qui coupe de façon fiable l'alimentation électrique de l'équipement. Le positionnement de l'équipement ne doit pas rendre difficile l'utilisation du dispositif de déconnexion. Ce dispositif doit être marqué en tant que dispositif de déconnexion de l'équipement.

REMARQUE : L'interrupteur intégré dans l'équipement ne doit PAS servir de dispositif de déconnexion principal et ne coupe pas l'alimentation électrique ou le courant de l'équipement. Il est ajouté en tant que moyen de couper certains circuits à l'intérieur de l'alimentation électrique tels que l'affichage et le circuit de sortie.

INSTALLATION

L'installation de l'équipement ou du système intégrant l'équipement doit être conforme aux instructions d'installation fournies par le fabricant. La sécurité de tout système intégrant l'équipement est de la responsabilité du monteur.

UTILISATION INAPPROPRIÉE DE L'ÉQUIPEMENT

Une utilisation de l'équipement non conforme aux spécifications du fabricant comporte un risque d'altérer la protection fournie par l'équipement.

INSTRUCTIONS DE SÉCURITÉ DU MONTAGE EN RACK

- A) Température ambiante de fonctionnement élevée : Si l'équipement est installé dans un rack fermé ou comportant plusieurs unités, la température ambiante de fonctionnement de l'environnement du rack peut être supérieure à la température ambiante de la pièce. Par conséquent, il convient d'envisager d'installer l'équipement dans un environnement compatible avec la température ambiante maximale (Tma) spécifiée par le fabricant.
- B) Débit d'air réduit : L'installation de l'équipement dans un rack doit être telle que la quantité de débit d'air nécessaire pour un fonctionnement sûr de l'équipement ne soit pas compromise.
- C) Chargement mécanique : Le montage de l'équipement dans le rack doit être exempt de toute condition dangereuse due à une charge mécanique inégale.
- D) Surcharge des circuits : Il convient de tenir compte de la connexion de l'équipement au circuit d'alimentation et de l'effet que la surcharge des circuits pourrait avoir sur la protection contre la surintensité et le câblage d'alimentation électrique. Il est recommandé à cet effet de tenir compte des valeurs nominales indiquées sur les plaques signalétiques de l'équipement.
- E) Mise à la terre fiable : Une mise à la terre fiable des équipements montés en rack doit être préservée. Une attention particulière doit être apportée aux connexions électriques autres que les connexions directes au circuit de dérivation (l'utilisation de multiprises, par exemple).

UTILISATEURS

Cet équipement ne doit être utilisé que par du personnel qualifié comprenant les instructions et les manuels de sécurité fournis avec l'équipement. Si l'équipement doit être utilisé par du personnel non qualifié, celui-ci doit être supervisé par du personnel qualifié.

RISQUE DE CHOC ÉLECTRIQUE

Avertissement Haute tension

Des tensions dangereuses sont présentes dans l'alimentation électrique. Pour éviter les blessures, débrancher toujours l'alimentation, décharger les circuits et retirer les sources de tension externes avant de toucher les composants.

Avertissement Classe I

L'unité est un produit de Classe I. Pour réduire les risques de choc électrique, l'unité nécessite une mise à la terre fiable et une installation professionnelle. Toute interruption du conducteur de protection ou déconnexion de la borne de protection entraînera un risque potentiel de choc électrique pouvant entraîner des dommages corporels. Avertissement de risques énergétiques : la sortie principale de l'unité est une énergie dangereuse (240 VA) et ne doit pas être accessible à l'utilisateur dans l'application finale.

Avertissement Sortie dangereuse

Un risque de choc électrique existe lors de l'utilisation d'une alimentation électrique avec une tension de sortie supérieure à 60 V CC. Ne pas mettre l'alimentation électrique sous tension lorsque la tension de sortie est supérieure à 60 V CC sans barres omnibus de sortie/ou protection des connecteurs de sortie assemblés. Éteindre l'alimentation électrique ou couper l'alimentation électrique du secteur AC avant d'effectuer ou de changer une connexion du panneau arrière.

Attention Fusible interne

Le fusible interne protège l'unité et ne doit pas être remplacé par l'utilisateur. En cas de défaut interne, l'unité doit être renvoyée à TDK-Lambda Ltd. ou à l'un de ses agents agréés.

ALLGEMEINE SICHERHEITSHINWEISE

LESEN SIE DIE SICHERHEITSHINWEISE

Die folgenden Sicherheitsvorkehrungen müssen in allen Phasen des Betriebs, der Wartung und der Reparatur dieses Geräts eingehalten werden. Die Nichteinhaltung der in diesem Dokument aufgeführten Sicherheitsvorkehrungen oder Warnhinweise verstößt gegen die Sicherheitsstandards bei der Konstruktion, Herstellung und dem bestimmungsgemäßen Gebrauch dieses Geräts und kann die eingebauten Schutzvorrichtungen beeinträchtigen. TDK-Lambda haftet nicht für die Nichteinhaltung dieser Anforderungen durch den Benutzer.

WARTUNG

Diese Produkte sind nicht vom Kunden zu warten. Der Austausch von Teilen und Änderungen dürfen nur von autorisiertem TDK-Lambda Servicepersonal vorgenommen werden. Für Reparaturen oder Änderungen muss das Produkt an die TDK-Lambda-Servicestelle geschickt werden.

KRITISCHE KOMPONENTEN

Diese Produkte sind ohne ausdrückliche schriftliche Genehmigung des Geschäftsführers von TDK-Lambda Ltd. nicht zur Verwendung als kritische Komponenten in nuklearen Kontrollsystemen, lebenserhaltenden Systemen oder Geräten für den Einsatz in gefährlichen Umgebungen zugelassen.

PRODUKTVERWENDUNG

Diese Produkte sind für die Verwendung als eigenständige Geräte innerhalb der im Benutzerhandbuch beschriebenen Grenzen konzipiert. Sie sind nicht für den allgemeinen Heim- oder Verbrauchergebrauch und für die Verwendung in Innenräumen vorgesehen.

UMWELT

Diese Produkte entsprechen der Schutzart IP20, daher dürfen keine Chemikalien/Lösungsmittel, Reinigungsmittel und andere Flüssigkeiten verwendet werden.

UMGEBUNG

Diese Produkte sind für den Einsatz in einer Umgebung des Verschmutzungsgrads 2, Überspannungskategorie II, ausgelegt und müssen innerhalb der im Benutzerhandbuch angegebenen Umgebungsbedingungen (Temperatur, Höhe usw.) betrieben werden.

AUSGANGSBELASTUNG

Die vom Produkt entnommene Ausgangsleistung darf die auf dem Produktetikett angegebene Nennleistung nicht überschreiten, es sei denn, dies ist im Benutzerhandbuch angegeben. Die Isolierung der an den DC-Ausgang angeschlossenen Leitung sollte dem Ausgangslaststrom und der Ausgangsspannung entsprechen.

EINGABEPARAMETER

Diese Produkte müssen innerhalb der im Benutzerhandbuch angegebenen Eingangsparameter betrieben werden. Der Anschluss dieses Geräts an das Stromnetz darf nur gemäß den Anweisungen im Benutzerhandbuch erfolgen, um das Gefahrenrisiko zu verringern. **Der Anschluss an die AC-Netze muss von einer Elektrofachkraft oder einer anderen qualifizierten Person vorgenommen werden.**

ENTSORGUNG AM LEBENSENDE

Das Produkt enthält Komponenten, die eine spezielle Entsorgung erfordern. Stellen Sie sicher, dass das Gerät am Ende seiner Lebensdauer ordnungsgemäß und in Übereinstimmung mit den örtlichen Vorschriften entsorgt wird.

GERÄTEBEDIENUNG UND BETRIEBSKONTROLLEN

Kennzeichnung und Beschreibung der Bedienelemente und deren Verwendung in allen Betriebsarten sind im Benutzerhandbuch angegeben. Die Bedienung des Geräts wird im Benutzerhandbuch ausführlich erklärt.

LÜFTUNG

Die Lüftungsöffnungen an diesen Produkten dürfen nicht abgedeckt werden. Stellen Sie sicher, dass ein Abstand von mindestens 10 cm zwischen einem Hindernis und den Lüftungsöffnungen besteht.

EINGANGS- UND AUSGANGSKABEL

Sie müssen Kabel mit den entsprechenden Spannungs- und Temperaturwerten verwenden, um einen sicheren und zuverlässigen Betrieb zu gewährleisten.

ZUBEHÖR

Es darf nur Zubehör verwendet werden, das den Spezifikationen des Herstellers entspricht. Die Kennzeichnung und die Hinweise zum Anschluss von Zubehör finden Sie im Benutzerhandbuch.

HANDHABUNG, HEBEN UND TRAGEN

Die Handhabung, das Heben und Tragen des Geräts darf nur gemäß den Anweisungen im Benutzerhandbuch erfolgen, um mögliche Personenschäden zu vermeiden.

UNTERBRECHUNGSVORRICHTUNG

Ein Leitungsschutzschalter mit den im Benutzerhandbuch angegebenen Stromstärken ist die Haupttrennvorrichtung des Geräts, die die Versorgung des Geräts zuverlässig abschaltet. Die Positionierung des Geräts darf es nicht erschweren, die Trennvorrichtung zu bedienen. Das Gerät muss als Trennvorrichtung für das Gerät gekennzeichnet sein.

HINWEIS: Der in das Gerät eingebaute Schalter fungiert NICHT als Haupttrennvorrichtung und unterbricht nicht die Versorgung oder den Strom des Geräts. Er wird als Mittel zum Abschalten bestimmter Schaltkreise innerhalb des Netzteils, wie z. B. der Anzeige und des Ausgangskreises, hinzugefügt.

EINBAU

Der Einbau des Geräts oder der Anlage, in die das Gerät eingebaut ist, muss in Übereinstimmung mit den vom Hersteller bereitgestellten Installationsanweisungen erfolgen. Die Sicherheit eines Systems, das das Gerät enthält, liegt in der Verantwortung des Monteurs.

NICHT BESTIMMUNGSGEMÄSSE VERWENDUNG DES GERÄTS

Wenn das Gerät auf eine Weise verwendet wird, die nicht vom Hersteller angegeben ist, kann der vom Gerät gebotene Schutz beeinträchtigt werden.

SICHERHEITSHINWEISE FÜR DIE RACKMONTAGE

- A) Erhöhte Betriebsumgebung Wenn das Gerät in einem geschlossenen oder mehrgliedrigen Rack installiert wird, kann die Betriebsumgebungstemperatur der Rack-Umgebung höher sein als die Raumtemperatur. Daher sollte die Installation des Geräts in einer Umgebung in Betracht gezogen werden, die mit der vom Hersteller angegebenen maximalen Umgebungstemperatur (Tma) kompatibel ist.
- B) Reduzierter Luftstrom Die Installation der Geräte in einem Rack sollte so erfolgen, dass der für den sicheren Betrieb der Geräte erforderliche Luftstrom nicht beeinträchtigt wird.
- C) Mechanische Belastung Die Montage der Geräte im Rack sollte so erfolgen, dass kein gefährlicher Zustand durch ungleichmäßige mechanische Belastung entsteht.
- D) Überlastung des Stromkreises Der Anschluss des Geräts an den Versorgungsstromkreis und die Auswirkungen, die eine Überlastung der Stromkreise auf den Überstromschutz und die Versorgungskabel haben könnte, sollten berücksichtigt werden. Berücksichtigen Sie in diesem Zusammenhang die Angaben auf dem Typenschild des Geräts.
- E) Zuverlässige Erdung Die zuverlässige Erdung von Geräten im Rack sollte beibehalten werden. Besondere Aufmerksamkeit sollte anderen Versorgungsanschlüssen als dem direkten Anschluss an den Abzweigstromkreis (z. B. Verwendung von Steckdosenleisten) gewidmet werden.

BENUTZER

Dieses Gerät darf nur von qualifiziertem Personal bedient werden, das die mit dem Gerät gelieferten Anweisungen und Sicherheitshandbücher versteht. Wenn das Gerät von unqualifiziertem Personal bedient werden muss, dann muss dieses von qualifiziertem Personal beaufsichtigt werden.

GEFAHR EINES ELEKTRISCHEN SCHLAGES

WARNUNG VOR HOCHSPANNUNG

Innerhalb der Spannungsversorgung liegen gefährliche Spannungen an. Um Verletzungen zu vermeiden, schalten Sie vor dem Berühren von Bauteilen immer die Stromversorgung ab, entladen Sie Stromkreise und entfernen Sie externe Spannungsquellen.

KLASSE I WARNUNG

Das Gerät ist ein Produkt der Klasse I. Um die Gefahr eines elektrischen Schlages zu minimieren, muss das Gerät zuverlässig geerdet und fachgerecht installiert werden. Jede Unterbrechung des Schutzleiters oder Abtrennung der Schutzerdungsklemme führt zu einer potenziellen Stromschlaggefahr, die zu Verletzungen führen kann. Energiegefahren Warnung: Der Hauptausgang des Geräts stellt gefährliche Energie dar (240VA) und darf in der Endanwendung nicht für den Benutzer zugänglich sein.

GEFÄHRLICHE AUSGÄNGE WARNUNG

Bei Verwendung eines Netzteils mit einer Ausgangsspannung von mehr als 60 VDC besteht die Gefahr eines Stromschlags. Schalten Sie die Stromversorgung nicht ein, wenn die Ausgangsspannung über 60 VDC liegt, ohne dass die Ausgangssammelschienen und/oder der Schutz der Ausgangsanschlüsse montiert sind. Schalten Sie die Stromversorgung aus oder trennen Sie sie vom Stromnetz, bevor Sie Anschlüsse an der Rückseite vornehmen oder ändern.

INTERNE SICHERUNG WARNUNG

Die interne Sicherung schützt das Gerät und darf nicht durch den Benutzer ausgetauscht werden. Im Falle eines internen Defekts muss das Gerät an TDK-Lambda Ltd. oder eine ihrer autorisierten Vertretungen zurückgeschickt werden.

INFORMAÇÕES GERAIS DE SEGURANÇA

LEIA AS INSTRUÇÕES DE SEGURANÇA

As seguintes precauções de segurança deverão ser estritamente observadas durante todas as fases de operação, serviço e reparação deste equipamento. O não cumprimento das instruções ou avisos de segurança apresentados neste documento viola os padrões de segurança, conceção, fabrico e a utilização pretendida deste equipamento, e poderá afetar as proteções nele incorporadas. A TDK-Lambda não poderá ser responsável pelo não cumprimento destes requisitos por parte do utilizador.

MANUTENÇÃO

A manutenção destes produtos não deve ser efetuada pelo cliente. As substituições de peças e modificações deverão ser efetuadas apenas por pessoal de manutenção autorizado da TDK-Lambda. Quando os produtos necessitarem de reparações ou modificações, deverão ser enviados para um local de manutenção da TDK-Lambda.

COMPONENTES CRÍTICOS

Não é permitida a utilização destes produtos como componentes críticos em sistemas de controlo nuclear, sistemas de suporte de vida, ou equipamento para utilização em ambientes perigosos, sem a expressa autorização escrita do Diretor-Geral da TDK-Lambda Ltd.

UTILIZAÇÃO DOS PRODUTOS

Estes produtos foram concebidos para utilização como equipamento autónomo, dentro dos limites descritos no manual do utilizador e para utilização em espaços interiores. Os produtos não foram concebidos para serem utilizados pelo consumidor em geral.

AMBIENTAL

Estes produtos são IP20 e, portanto, químicos/solventes, agentes de limpeza e outros líquidos, não deverão ser usados.

AMBIENTE

Estes produtos foram concebidos para uma utilização em ambientes de Categoria de Sobretensão II, Poluição de Grau 2 e deverão ser operados em condições ambientais (temperatura, altitude, etc.) especificadas no manual do utilizador.

POTÊNCIA DE SAÍDA

A potência de saída obtida do produto não deverá exceder a classificação mencionada no rótulo do produto, exceto se mencionado no manual do utilizador. O isolamento do cabo conectado à saída DC deverá estar de acordo com a corrente e tensão da carga de saída.

PARÂMETROS D ENTRADA

Estes produtos deverão ser operados em observação dos parâmetros de entrada mencionados no manual do utilizador. Os meios de conexão deste equipamento à fonte de alimentação deverão estar de acordo com as instruções especificadas no manual do utilizador, para reduzir os riscos de perigo. <u>A conexão a</u> <u>AC PRINCIPAL deverá ser executada por um eletricista ou outro profissional qualificado.</u>

ELIMINAÇÃO EM FIM DE VIDA

O produto contém componentes que requerem condições especiais para eliminação. Assegure-se que a unidade é apropriadamente descartada no fim da sua vida útil e de acordo com os regulamentos locais.

OPERAÇÃO DO EQUIPAMENTO E CONTROLOS DE OPERAÇÃO

A identificação e descrição dos controlos de operação e sua utilização em todos os modos de operação estão descritos no manual do utilizador. A operação do equipamento encontra-se detalhadamente explicada no manual do utilizador.

VENTILAÇÃO

As aberturas de ventilação nestes produtos não deverão ser cobertas. Assegure-se que há um espaço de pelo menos 10cm entre as aberturas de ventilação e qualquer obstrução.

CABOS DE ENTRADA E SAÍDA

Deverão ser utilizados cabos com classificação de tensão e temperatura apropriadas, para assegurar uma operação segura e fiável.

ACESSÓRIOS

Somente acessórios em conformidade com as especificações do fabricante deverão ser utilizados. Consulte o manual do utilizador, para obter instruções sobre conexão de acessórios e sua identificação.

MANUSEAMENTO, ELEVAÇÃO E TRANSPORTE

O manuseamento, elevação e transporte do equipamento deverá ser efetuado somente de acordo com as instruções especificadas no manual do utilizador, para evitar danos pessoais potenciais.

DESCONEXÃO DO DISPOSITIVO

Um disjuntor com potência de corrente conforme especificada no manual do utilizador é o dispositivo principal de desconexão do equipamento, que desliga de forma eficaz a fonte de alimentação do equipamento. O posicionamento do equipamento não deve dificultar a operação do dispositivo de desconexão. O dispositivo deverá estar marcado como dispositivo de desconexão para o equipamento.

NOTA: O interrutor incorporado no equipamento NÃO funciona como um dispositivo principal de desconexão e não corta a fonte de alimentação ou potência do equipamento. O interrutor funciona apenas como uma forma de desligar certos circuitos dentro da fonte de alimentação, tais como o ecrã e o circuito de saída.

INSTALAÇÃO

A instalação do equipamento ou do sistema que incorpora o equipamento deverá ser efetuada de acordo com as instruções de instalação fornecidas pelo fabricante. A segurança de qualquer sistema que incorpore o equipamento é da responsabilidade do profissional que procedeu à sua instalação.

UTILIZAÇÃO IMPRÓPRIA DO EQUIPAMENTO

Se o equipamento for utilizado de forma não especificada pelo fabricante, a proteção proporcionada pelo equipamento poderá ser afetada.

INSTRUÇÕES DE SEGURANÇA PARA MONTAGEM EM BASTIDOR

- A) Ambiente de Operação Elevado Se a instalação for efetuada num bastidor fechado ou com várias unidades montadas, a temperatura ambiente do bastidor deverá ser mais alta do que a temperatura ambiente do local. Desta forma, deverá ser levado em consideração que o equipamento deve ser instalado num ambiente compatível com a temperatura ambiente máxima (Tma) especificada pelo fabricante.
- B) Fluxo de Ar Reduzido A instalação do equipamento num bastidor deverá ser de forma a não comprometer a quantidade do fluxo de ar requerido para um funcionamento seguro do equipamento.
- C) Carga Mecânica A montagem do equipamento no bastidor deverá respeitar a uniformidade da distribuição de peso, de forma a evitar condições de perigo devido a uma carga mecânica desequilibrada.
- D) Sobrecarga de Circuito Deve ser dada a devida atenção à conexão do equipamento ao circuito de alimentação e o efeito que a sobrecarga de circuitos poderá ter na proteção de sobretensão e cablagem de alimentação. As informações constantes no rótulo dos equipamentos deverão sempre ser levadas em consideração, quando esta questão é abordada.
- E) Ligação a Terra Eficaz O equipamento montado em bastidor deverá ter uma ligação a terra eficaz. Deve ser dada atenção particular às conexões da alimentação, que não as conexões diretas ao circuito derivado (por exemplo: utilização de extensões elétricas).

UTILIZADORES

Este equipamento deverá ser operado apenas por pessoal qualificado, que entenda os manuais de instruções e segurança fornecidos com o equipamento. Se o equipamento puder ser operado por pessoal sem qualificações especificas, este deverá estar sob a supervisão de um profissional qualificado.

RISCO DE CHOQUE ELÉTRICO

Aviso de Alta Tensão

Tensões perigosas estão presentes na fonte de alimentação. De forma a evitar ferimentos/danos, desconecte sempre a alimentação e os circuitos de descarga e remova as fontes externas de tensão, antes de tocar em qualquer componente.

Aviso Classe I

A unidade é um produto de Classe I. Para minimizar o perigo de choque elétrico, a unidade deverá possuir uma ligação a terra eficaz, instalada por um profissional. Qualquer seccionamento ou desconexão do condutor de ligação ao terminal de terra causa um perigo potencial de choque elétrico e pode ocasionar ferimentos pessoais. Aviso de Perigo de Tensão: A saída principal da unidade possui tensão perigosa (240VA) e não deve ser acessível pelo utilizador final.

Aviso de Tensão de Saída Perigosa

Existe um risco potencial de choque elétrico, quando se utiliza uma fonte alimentação com uma tensão de saída maior do que 60VDC. NÃO LIGUE a fonte de alimentação, quando a tensão de saída é superior a 60VDC, sem que esteja montada proteção de barramentos ou conectores de saída. DESLIGUE a fonte de alimentação ou desconecte a alimentação AC antes de fazer ou alterar qualquer conexão do painel traseiro.

Precaução Fusível Interno

O fusível interno protege a unidade e não deve ser substituído pelo utilizador. No caso de defeito interno, a unidade deverá ser devolvida a TDK-Lambda Ltd. ou a um dos seus agentes autorizados.

GENESYS[™] GEN 5kW SERIES POWER SUPPLIES

USER MANUAL

This Manual Covers Models:

GEN40-125	GEN200-25
GEN60-85	GEN300-17
GEN80-65	GEN400-13
GEN100-50	GEN500-10
GEN150-34	GEN600-8.5
	GEN40-125 GEN60-85 GEN80-65 GEN100-50 GEN150-34

Manual Supplement

For units equipped with IEEE488.2 (GPIB) Interface option, refer to Manual IA586-04-01_.

For units equipped with LAN Interface option, refer to Manual IA672-04-01_.

TDK-Lambda Corporation

中华人民共和国中国电子行业标准 SJ/T11364-2014(中国RoHS2)

People's Republic of China Electronic Industry Standard SJ/T 11364 -2014 (China RoHS2)

产品 / Product:

GEN5000W SERIES

	有毒有害物质或元素 / Hazardous Substances												
零件名称 / Part Name	铅 Pb	汞 Hg	镉 Cd	六价 铬 Cr6+	<mark>多溴</mark> 联苯 PBB	多溴二苯醚 PBDE							
电路模块 / PCB Assembly	×	0	×	0	0	0							
机箱(如适用)/ Enclosure (if applicable)	×	0	0	0	0	0							
配件/Accessories	0	0	0	0	0	0							

此表依照SJ/T11634-2014规定制定

This table is prepared in accordance with the provisions of SJ/T 11364-2014

o =	指明产品所有均质材料包含的有害物质要低于GB/T26572限定的要求 Indicates that said hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement of GB/T 26572
x =	指明产品所用的至少一种均质材料包含的有害物质高于GB/T26572限定的要求 Indicates that said hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement of GB/T 26572.

TABLE OF CONTENTS

WARRANTY	Pa.	1
	Pq.2	2
SAFETY INSTRUCTIONS	Pğ.(3
GERMAN SAFETY INSTRUCTIONS	Pg.	5
CHAPTER 1 GENERAL INFORMATION	Pg.	7
1.1 USER MANUAL CONTENT	Pg.	7
1.2 INTRODUCTION	·Pg.	7
1.2.1 Oeneral description	Pg.	7
1.2.3 Features and options	Pg.	/ 7
1.2.4 Multiple output power system	Pa:	ו 8
1.2.5 Control via the serial communication port	Pa.	8
1.2.6 Analog voltage programming and monitoring	·Pa.	8
1.2.7 Parallel operation	Pg.	8
1.2.8 Output connections	Pg.8	8
1.2.9 Cooling and mechanical construction	Pğ.9	9
1.3 ACCESSORIES	Pg.	9
1.3.1 General	Pg.	9
1.3.2 Selial IIIK Cable	Pg.s	9
1 3 4 AC cables	Pg.:	9 0
	ry.	9
CHAPTER 2 SPECIFICATIONS	_	
2 1 OLITPUT RATING	Pg.	10
2 2 INPLIT CHARACTERISTICS	Pg.	10
2.3 CONSTANT VOLTAGE MODE	Pg.	10 10
2.4 CONSTANT CURRENT MODE	Pa	10
2.5 ANALOG PROGRAMMING AND MONITORING	·Pa	10^{10}
2.6 PROGRAMMING AND READBACK	Pa.	11
2.7 PROTECTIVE FUNCTIONS	Pg.	11
2.8 FRONT PANEL	·Pğ.'	11
2.9 ENVIRONMENTAL CONDITIONS	Pg.	11
	Pg.'	11
	Pg.'	11
2.12 SUPPLEMENTAL CHARACTERISTICS	Pg.	12 12
	гy.	13
CHADTED 3 INSTALLATION	_	
	Pg.	14
3.2 PREPARATION FOR USE	Pg.	14 14
3.3 INITIAL INSPECTION	Pg.	14 17
3.4 RACK MOUNTING	.Pa	14
3.4.1 To install the power supply in a rack	Pa.	14
3.4.2 Rack mount slides	Pq.	15
3.4.3 Plastic Supporting Legs	Pğ.'	15
3.5 LOCATION MOUNTING AND COOLING	Pa.	15
3.6 AC SOURCE REQUIREMENTS	Pq.	15
3.7 AC INPUT POWER CONNECTION	·Pğ.'	15
3.7.1 AC input connector	Pg.'	16
3.7.2 AC input cord	·Pg.′	16
	·Pg.'	16
3.0 TURN-UN CHECKUUT PROCEDURE	·Pg.'	17
3.8.2 Prior to operation	Pg.	17 17
3.8.3 Constant voltage check	Pg.	1/ 10
3.8.4 Constant current check	Pa	10 12
3.8.5 OVP check	Pa	18
3.8.6 UVL check	Pa	18
3.8.7 Foldback check	Pa.	19
3.8.8 Address setting	Pq.	19
3.8.9 Baud rate setting	Pg.	19

3.9 CONNECTING THE LOAD	Pg.19
3.9.1 Load Wiring	Pg.19
3.9.2 Current Carrying Capacity	Pg.19
3.9.3 Wire termination	Pg.20
3.9.4 Noise and Impedance Effects	Pg.21
3.9.5 Inductive loads	Pg.21
3.9.6 Making the load connections	Pg.21
3.9.7 Connecting single loads, local sensing (default)	Pg.24
3.9.8 Connecting single loads, remote sensing	Pg.24
3.9.9 Connecting multiple loads, radial distribution method	Pg.24
3.9.10 Multiple loads connection with distribution terminals	Pg.25
3.9.11 Grounding outputs	Pg.25
3.10 LOCAL AND REMOTE SENSING	Pg.26
3.10.1 Sense wiring	Pa.26
3.10.2 Local sensing	Pg.26
3.10.3 Remote sensing	Pa 27
3.10.4 J2 sense connector technical information	Pa 27
3.11 REPACKAGING FOR SHIPMENT	Pa 27
	i y.z <i>i</i>
CHAPTER 4 FRONT AND REAR PANEL CONTROLS AND CONNECTORS	Pa 28
4.1 INTRODUCTION	Pa 28
4.2 FRONT PANEL CONTROLS AND INDICATORS	Pa 28
4.3 REAR PANEL	Da 30
4.4 REAR PANEL SW1 SETUP SWITCH	Pg 21
4 4 1 SW1 positions functions	Fy.31
1 1 2 Pasatting the SW1 switch	Pg.32
4.5 REAR PANEL 11 PROGRAMMING AND MONITORING CONNECTOR	Pg.32
4.5.1 Making .1 connections	Pg.33
	Pg.33
CHAPTER 5 LOCAL OPERATION	Da 25
	Pg.35
	Pg.35
5.2 STANDARD OF ERATION	Pg.35
5.2.1 Constant Voltage Mode	Pg.35
5.2.2 Constant Current Operation	Pg.35
5.2.5 Automatic crossover	Pg.36
5.3 OVER VOLTAGE PROTECTION (OVP)	Pg.36
5.3.1 Setting the OVP reven	Pg.36
5.3.2 Activated OVP protection indications	Pg.36
	Pg.36
5.4 ONDER VOLIAGE LIMIT (OVL)	Pg.37
	Pg.37
5.5 FOLDBACK PROTECTION	Pg.37
5.5.1 Setting the Foldback protection	Pg.37
5.5.2. Resetting activated Foldback protection	Pg.37
5.6 OUTPUT ON/OFF CONTROL	Pg.37
5.7 OUTPUT SHOT-OFF (SO) CONTROL VIA REAR PANEL 11 CONNECTOR	Pg.37
5.8 ENABLE/DISABLE CONTROL VIA REAR PANEL JT CONNECTOR	Pg.38
5.9 CV/CC SIGNAL	Pg.38
5.10 PS_OK SIGNAL	Pg.38
5.11 SAFE START AND AUTO-RESTART MODES	Pg.39
5.11.1 Automatic start mode	Pg.39
5.11.2 Sale start mode	Pg.39
3.12 UVER TEMPERATURE PROTECTION (UTP)	Pg.39
	Pg.39
0. 14 SEKIES UPEKALIUN	Pg.39
5.14.1 Series connection for increased output voltage	Pg.40
5. 14.∠ Series connection for positive and negative output voltage	Pg.41
5.15 PAKALLEL UPEKAHUN	Pg.42
	Pg.44
D. I / FRUNT PANEL LUCKING	Pg.44

TABLE OF CONTENTS

CHAPTER 6 REMOTE ANALOG PROGRAMMING	Pa.45
6.1 INTRODUCTION	Pa.45
6.2 LOCAL/REMOTE ANALOG CONTROLL	Pg.45
6.3 LOCAL/REMOTE ANALOG INDICATION	Pğ.45
6.4 REMOTE VOLIAGE PROGRAMMING OF OUTPUT VOLIAGE AND CURRENT LIMIT	• Pg.46
6.5 RESISTIVE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT LIMIT	Pg.47
0.0 REMOTE MONITORING OF OUTPUT VOLIAGE AND CURRENT	Pg.48
CHAPTER 7 RS232 & RS485 REMOTE CONTROL	Pg.49
	Pg.49
7.2 CONFIGURATION	Pg.49
7.2.1 Default setting	Pg.49
7.2.2 Address Setting	Pg.49
7.2.7 Rozzz UI RO400 Selection	Pg.49
7.2.4 Date rate setting	•Pg.49
7.2.6 RS232/458 nort at Local mode	Pg.49
7.2.7 Front panel in Remote mode	Pg.50
7.3 REAR PANEL RS232/485 CONNECTOR	.Pa 50
7.4 CONNECTING POWER SUPPLIES TO RS232 OR RS485 BUS	Pa 51
7.4.1 Single power supply	•Pa.51
7.4.2 Multi power supplies connection to RS232 or RS485 bus	Pa.52
7.5 COMMUNICATION INTERFACE PROTOCOL	Pg.52
7.5.1 Data format	Pg.52
7.5.2 Addressing	Pg.52
7.5.3 End of message	Pg.52
7.5.4 Command repeat	Pg.52
7.5.5 Chelkrowledge	Pg.52
7.5.0 ACKNOWIEUge	•Pg.52
7.5.7 ETUI MESSaye	Pg.53
7.6 FRROR MESSAGES	Pg.53
7.7 COMMAND SET DESCRIPTION	Pg.53
7.7.1 General guides	Pa 53
7.7.2 Command set categories	Pa 53
7.7.3 Initialization control commands	Pa 54
7.7.4 ID control commands	Pa.54
7.7.5 Output control commands	Pg.54
7.7.6 Global output commands	Pg.56
7.7.7 Status control commands	·Pg.57
7.8 STATUS, ERROR AND SRQ REGISTERS	Pg.58
7.8.1 General	Pg.58
7.0.2 CONULIONAL REVISIERS	Pg.58
7 9 SERIAL COMMUNICATION TEST SET-UP	Pg.59
	Pg.62
CHAPTER 8 ISOLATED ANALOG PROGRAMMING OPTION	Pg.63
	Pg.63
8.2 SPECIFICATIONS	Pg.63
8.2.1 U-5V/U-1UV Option	Pg.63
8.3 ISOLATED PROGRAMMING & MONITORING CONNECTOR	•Pg.63
8.4 SETUP AND OPERATING INSTRUCTIONS	Pg.64
8.4.1 Setting up the power supply for 0-5/0-10V Isolated Programming and Monitoring	Pg.05
8.4.2 Setting up the power supply for 4-20mA Isolated Programming and Monitoring	Pg.05
8.5 PARALLEL OPERATION WITH ISOLATED ANALOG OPTION	Pa 66
	.1 9.00
	· Pg.67
9.2 LINITS LINDER WARRANTY	Pg.67
9.3 PERIODIC MAINTENANCE	Pg.67
9.4 ADJUSTMENT AND CALIBRATION	Py.0/
9.5 PARTS REPLACEMENT AND REPAIRS	- 9.07 . Pa 67
9.6 TROUBLESHOOTING	• 9.07 • Pa 67
9.7 FUSE RATING	Pa.68
CHAPTER 9 GERMAN TRANSLATION	Pa.68
USER MANUAL INDEX	• Pa.72

This page intentionaly left blank

WARRANTY

This TDK-Lambda Ltd. product is warranted against defects in materials and workmanship for a period of five years from date of shipment. During the warranty period, TDK-Lambda Ltd. will, at it's option, either repair or replace products which prove to be defective.

LIMITATION OF WARRANTY

The warranty shall not apply to defects resulting from improper or inadequate usage or maintenance by the buyer, buyer supplied products or interfacing. The warranty shall not apply to defects resulting from unauthorized modifications or from operation exceeding the environmental specifications of the product or if the QA seal has been removed or altered by anyone other than TDK-Lambda Ltd. authorized personnel. TDK-Lambda Ltd. does not warrant the buyers circuitry or malfunctions of TDK-Lambda Ltd. products resulting from the buyer's circuitry. Furthermore, TDK-Lambda Ltd. does not warrant any damage occurring as a result of the buyer's circuitry or the buyer's - supplied products. No other warranty is expressed or implied.

WARRANTY SERVICE

This product must be returned to an authorized TDK-Lambda Ltd. service facility for repairs or other warranty service. For products returned to TDK-Lambda Ltd. for warranty service, the buyer shall prepay shipping charges to TDK-Lambda Ltd. and TDK-Lambda Ltd. shall pay the shipping charges to return the product to the buyer. Refer to section 3.11 for repackaging for shipment.

DISCLAIMER

The information contained in this document is subject to change without notice. TDK-Lambda Ltd. shall not be liable for errors contained in this document or for incidental or consequential damages in connection with the furnishing, performance or use of this material. No part of this document may be photocopied, reproduced or translated into another language without the prior written consent of TDK-Lambda Ltd..

TRADEMARK INFORMATION

Genesys[™] power supply is a trademark of TDK-Lambda Ltd. & TDK- Lambda Americas Inc. Microsoft[™] and Windows[™] are trademarks of Microsoft Corporation.

REGULATORY NOTICES

FCC Notice

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

WARNING: Modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment under FCC Rules.

SAFETY/EMC APPROVALS

UL 61010-1 and CSA22.2 No.61010-1 - cTUVus. IEC 61010-1 - CB Test Report and Certificate. EN 61010-1 - TUV Mark, CE mark. EN 55032 EN 55024

Marking by the CE Symbol indicates compliance to the EMC Directive, the Low Voltage Directive and RoHS Directive of the European Union.

All Models of GEN series except for GENH750W and GEN750W, are professional equipment and are not intended for sale to the general public.

A "Declaration of Conformity" in accordance with the preceding directives and standards has been made and is on file at our EU representative TDK LAMBDA Germany GmbH, Karl-Bold-Str. 40 D-77855 Achern.

A "Declaration of Conformity" may be accessed via company web site <u>www.emea.tdk-lambda.com/manual</u>

WARNING: This is a Class A product. On a domestic environment, this product may cause radio interference in which case user may be required to take adequate measures.

SAFETY INSTRUCTIONS

CAUTION

The following safety precaution must be observed during all phases of operation, service and repair of this equipment. Failure to comply with the safety precautions or warnings in this document violates safety standards of design, manufacture and intended use of this equipment and may impair the built-in protections within.TDK-Lambda Ltd.shall not be liable for user's failure to comply with these requirements.

INSTALLATION CATEGORY

The Genesys[™] power supply series has been evaluated to INSTALLATION CATEGORY II. Installation category (over voltage category) II: local level, appliances, portable equipment etc.. With smaller transient over voltage than Installation Category (over voltage category) III.

GROUNDING

This product is a Safety Class 1 instrument. To minimize shock hazard, the instrument chassis must be connected to an electrical ground. The instrument must be connected to the AC power supply mains through a three conductor power cable for Single Phase models and through a four conductor power cable for Three Phase models with the ground wire firmly connected to an electrical ground (safety ground) at the power outlet.

For instruments designed to be hard-wired to the supply mains, the protective earth terminal must be connected to the safety electrical ground before another connection is made. Any interruption of the protective ground conductor, or disconnection of the protective earth terminal will cause a potential shock hazard that might cause personal injury.

FUSES

Fuses must be changed by authorized TDK-Lambda Ltd. service personnel only. For continued protection against risk of fire, replace only with the same type and rating of fuse. Refer to maintenance instructions in chapter 9 for fuses rating.

CAUTION MULTI POLE FUSING

The Genesys[™] power supply units have fuses in all supply conductots. To prevent potential risk of hazard during servicing, the unit shall be fully disconnected from the supply.

INPUT RATINGS

Do not use AC supply which exceeds the input voltage and frequency rating of this instrument. The input voltage and frequency rating of the Genesys[™] power supply series is:190-240V~, 50/60Hz for Three Phase 200V models and 380-415V~, 50/60Hz for Three Phase 400V models. For safety reasons, the mains supply voltage fluctuations should not exceed +/-10% of nominal voltage.

LIVE CIRCUITS

Operating personnel must not remove the instrument cover. No internal adjustment or component replacement is allowed by non-TDK-Lambda Ltd. qualified personnel. Never replace components with power cable connected. To avoid injuries, always disconnect power, discharge circuits and remove external voltage source before touching components.

PARTS SUBSTITUTIONS & MODIFICATIONS

Parts substitutions and modifications are allowed by authorized TDK-Lambda Ltd. service personnel only. For repairs or modifications, the instrument must be returned to TDK-Lambda Ltd. service facility.

SAFETY INSTRUCTIONS

ENVIRONMENTAL CONDITIONS

The Genesys[™] power supply series safety approval applies to the following operating conditions: *Indoor use *Ambient temperature: 0°C to 50°C *Altitude: up to 3000m

*Maximum relative humidity: 90% (no condensation)

*Pollution degree (PD): PD2

* IP protection class: IP20

SAFETY SYMBOLS

CAUTION

Do not use this product in environments with strong Electromagnetic field, corrosive gas and conductive materials.

On (Supply)

Direct Current (DC)

CAUTION Risk of Electrical Shock.

Instruction manual symbol. The instrument will be marked with this symbol when it is necessary for the user to refer to the instruction manual

Alternating Current (AC) Indicates hazardous voltage. Three-Phase Alternating Current Indicates ground terminal. Standby (Supply) Protective Ground Conductor Terminal

Off (Supply)

WARNING

The WARNING sign denotes a hazard. An attention to a procedure is called. Not following procedure correctly could result in personal injury. AWARNING sign should not be skipped and all indicated conditions must be fully understood and met.

CAUTION

The CAUTION sign denotes a hazard. An attention to a procedure is called. Not following procedure correctly could result in damage to the equipment. Do not proceed beyond a CAUTION sign until all indicated conditions are fully understood and met.

SICHERHEITS-INSTALLATIONS ANWEISUNGEN

Vorsicht

Vor Anschluss an das Netz ist die Aufstellanleitung wie nachstehend beschrieben zu beachten. Die nachstehenden Sicherheitsanweisungen müssen während aller Phasen des Betriebes, des Services und der Reparatur dieser Ausrüstung beachtet werden. Alle notwendigen Bedingungen die sicherstellen, dass die Einrichtung zu keiner Gefahr im Sinne dieser Norm führen kann, sind in diesem Handbuch beschrieben.

TDK-Lambda Ltd. ist nicht verantwortlich für Fehler, die bei der Inbetriebnahme des Gerätes auf Grundlage dieser Sicherheitsanweisungen durch den Betreiber entstehen können.

Betriebsbedingungen Die Genesys[™] Stromversorgungs-Reihe ist zur Installation gemäss Überspannungs-Kategorie 2 entwickelt worden.

Installations Kategorie (Überspannungs-Kategorie) 2 bedeutet: Kleinindustrie, Geräte, bewegliche Ausrustung etc., mit Überspannungen kleiner als Installation Kategorie 3.

WARNING Die Genesys[™] Stromversorgungen sind zur Installation in geschlossenen Gehäusen vorgesehen. Personenkontakt zu spannungsführenden Teilen (auf der Rückseite der Stromversorgung) muß durch fachgerechte Montage verhindert werden.

Erdungskonzept

Dieses Produkt ist ein Gerät mit Schutzklasse1. Damit gefährliche Energieinhalte und Spannungen vermieden werden, ist das Gerätechassis an eine Schutzerde anzuschliessen. Das 1-phasige Gerät muss an die AC-Wechselspannungsversorgung mit 3 Leitern (L, N, PE) und das 3-phasige Gerät mit 4 Leitern (L!, L2, L3, PE) angeschlossen werden. Der PE-Anschluss ist an einen festen Erder anzuschliessen. Bei Festverdrahtung des Gerätes ist sicherzustellen, dass der PE Anschluss als erstes durchgefuhrt wird.

Jede mögliche Unterbrechung des PE-Leiters oder Trennung der PE Masse kann einen möglichen elektrischen Schlag hervorrufen, der Personenschäden zur Folge hätte.

Vorsicht

Erdung des DC-Ausgangs

Es besteht Energiegefahr am RS232/485 und IEEE Anschluss, falls die Ausgangsspannung des Gerätes grösser ist als 400V und der positive Ausgangsanschluss des Netzteiles geerdet wird. Dies gilt insbesondere auch bei Reihenschaltungen von unterschiedlichen Netzteilen. Wird die RS232/485 oder IEEE Schnittstelle verwendet, ist darauf zu achten, dass der Plus-Ausgangsanschluss nicht geerdet wird.

Absicherung

ACHTUNG NETZSICHERUNGEN

Das Genesys[™] Netzteil hat in allen Versorgungsleitern Sicherungen. Um Gefahrdungen während der Wartung des Produktes zu vermiden muß das Produkt vollständig vom Versorgungsnetz abgesteckt werden.

Sicherungen durfen nur durch autorisierte TDK-Lambda Ltd. Service Personen ausgetauscht werden. Um Brandgefahr vorzubeugen, sind nur Sicherungen zu verwenden mit gleicher Bauart und Auslösecharakteristik. Siehe hierzu Wartungsanweisungen in Kapitel 9 bezuglich Sicherungen.

Anschluss an Versorgungsstromkreis

Der Betrieb des Gerätes ist nur für den dafür spezifizierten Wechselspannungsbereich und der angegebenen Freguenz erlaubt.

Der Nominäleingangsspannungsbereich der Genesys[™] Serie liegt bei 190-240VAC mit 50/60Hz. Fur 3-phasige Geräte mit nom. 200VAC, bzw. 380-415VAC 50/60Hz fur 3-phasige Geräte mit nom 400VAC.

Spannungsfuhrende Teile

Die Geräteabdeckung darf nur im stromlosen Zustand geöffnet werden. Interne Modifikationen. sowie Bauteileaustausch ist nur durch TDK-Lambda Ltd. gualifiziertes Personal erlaubt. Vor Austausch von Bauteilen ist das Netzkabel bzw. die Versorgungsspannung zu trennen. Energieversorgungsanschlüsse sind immer zu trennen um Personenverletzungen durch gefährliche Energieinhalte und Spannungen auszuschliessen. Die Stromkreise sind zu entladen, externe Spannunsquellen sind zu entfernen bevor Bauteile bzw. Komponenten getauscht werden.

Änderungen und Bauteileersatz

Ersatzteilaustausch - und Änderungen dürfen nur von autorisiertem TDK-Lambda Ltd. SERVICE-PERSONEN durchgeführt werden. Für Reparaturen oder Anderungen ist das Gerät zur TDK-Lambda Ltd. Service-Niederlassung zu retournieren.

SICHERHEITS-HINWEISE

Umweltbedingungen

Die Genesys[™]-Stromversorgungs-Serie ist gemäss den Sicherheitsabnahmen für folgende Betriebsbedingungen zugelassen.

- Stationäre Einrichtungen in Gebäuden.
- Umgebungstemperaturbereich: 0-50°C. Maximale Relative Luftfeuchtigkeit: 90% (nicht kondensierend). Betriebshöhe: bis zu 3000m.
- Verschmutzungsgrad 2.

Sicherheits- und Warnsymbole

/4\ VORSICHT Spannungsführende Teile - Gefahr durch elektrischen Schlag bzw. Energieinhalte.

Handbuch-Symbol. Das Gerät bzw. Geräteteile werden mit diesem Symbol gekennzeichnet, wenn es für den Benutzer notwendig ist, sich auf die Anweisungen im Handbuch zu beziehen.

4 Zeigt "spannungsführende Teile" mit gefährlicher Spannung an.

Zeigt Masse-Anschluss an, keine Schutzerde. (z.B. Masseanschluss an einen Verbraucher).

Schutzleiter-Anschlussklemme.

Symbol für Schalter oder Druckknöpfe - Zeigt die "Ein"- Stellung hier an.

) Symbol für Schalter oder Druckknöpfe - Zeigt die "Aus"-Stellung hier an.

---- Gleichspannung (DC)

- 3~ 3-phasen Wechselspannung
- ✓ Wechselspannung (AC)
- () Symbol für Bereitschaft (Standby)

WARNING Dieses Warnaufschrift weist auf eine Gefahr hin, die eine Überprüfunganweisung nach

sich zieht. Nichteinhaltung kann zu Personenschäden führen. Dieser Warnhinweis darf nicht übersprungen werden und die beschriebene Vorgehensweise muss strikt verstanden werden und dementsprechend umgesetzt werden.

CAUTION Diese "Vorsichtswarnung" weist auf eine Gefahr hin, die einer Vorkehrung bedarf. Nichteinhaltung kann zur Zerstörung der Anlage oder des Gerätes führen. Bitte berücksichtigen Sie alle Anweisungen, die dort beschrieben sind, bevor Sie mit Benutzung der Anlage bzw. des Gerätes fortfahren.

MASCHINENLAERM

Maschinenlaerminformations-Verordnung - 3. GPSGV, der hoechste Schalldruckpegel betraegt 70 dB(A) oder weniger gemass EN ISO 7779.

CHAPTER 1 GENERAL INFORMATION

1.1 USER MANUAL CONTENT

This user's manual contains the operating instructions, installation instructions and specifications of the Genesys[™] 5000W power supply series. The instructions refer to the standard power supplies, including the built-in RS232/485 serial communication. For information related to operation with the optional IEEE programming, refer to User Manual for Power Supply IEEE Programming Interface.

1.2 INTRODUCTION

1.2.1 General description

Genesys[™] power supplies are wide output range, high performance switching power supplies. The Genesys[™] series is power factor corrected and operates from worldwide AC voltage range. Output voltage and current are continuously displayed and LED indicators show the complete operating status of the power supply. The Front panel controls allow the user to set the output parameters, the protection levels (Over-Voltage protection, Under-Voltage limit and Foldback) and preview the settings. The rear panel includes the necessary connectors to control and monitor the power supply operation by remote analog signals or by the built-in serial communication (RS232/485). GPIB programming and Isolated-Analog programming/monitoring are optional.

1.2.2 Models covered by this manual

Models with rated output from 0-8VDC/0-600A to 0-600VDC/0-8.5A.

1.2.3 Features and options

- * Constant Voltage / Constant Current with automatic crossover.
- * Active Power Factor correction.
- * Single Phase or Three Phase options.
- * Embedded Microprocessor Controller.
- * Built in RS232/485 Interface.
- * Voltage & Current high resolution adjustment by digital encoders.
- * High accuracy programming/readback-16 bit.
- * Software Calibration (no internal trimmers / potentiometers).
- * Last Setting Memory.
- * Independent Remote ON/OFF (opto-isolated) and Remote Enable/Disable.

- * Parallel operation (Master/Slave) with Active current sharing.
- * Remote sensing to compensate for voltage drop of power leads.
- * External Analog Programming and Monitoring standard (0-5V or 0-10V, user selectable).
- * Cooling fan speed control for low noise and extended fan life.
- * Zero stacking- no ventillation holes at the top and bottom surface of the power supply.
- * Optional GPIB interface (SCPI compatible).
- * Optional Isolated Analog programming/monitoring (0-5V or 0-10V, user selectable and 4-20mA).

1.2.4 Multiple output power system

The Genesys[™] power supplies series can be configured into a programmable power system of up to 31 units using the built-in RS232/RS485 communication port in the power supply and the RS485 linking cable provided with each power supply.

In a GPIB system, each power supply can be controlled using the optional GPIB controller (factory installed).

1.2.5 Control via the serial communication port

The following parameters can be programmed via the serial communication port:

- 1. Output voltage setting.
- 2. Output current setting.
- 3. Output voltage measurement.
- 4. Output on/off control.
- 5. Output current measurement.
- 6. Foldback protection setting.
- 7. Over-voltage protection setting and readback.
- 8. Under-Voltage limit setting and readback.
- 9. Power-supply start up mode (last setting or safe mode)

1.2.6 Analog voltage programming and monitoring

Analog inputs and outputs are provided at the rear panel for analog control of the power supply. The output voltage and the current limit can be programmed by analog voltage or by resistor, and can be monitored by analog voltage. The power supply output can be remotely set to On or Off and analog signals monitor the proper operation of the power supply and the mode of operation (CV/CC).

1.2.7 Parallel operation

Genesys[™] power supplies of the same output voltage and current rating can be paralleled in master-slave configuration with automatic current sharing to increase power available.

1.2.8 Output connections

Output connections are made to rear panel bus-bars for models up to 100V and to a 4-terminal wire clamp connector for models above 100V rated output voltage.

Local or remote sense may be used. In remote sense, the voltage drop on the load wires should be minimized. Refer to the specifications for the maximum voltage drop value.

1.2.9 Cooling and mechanical construction

The Genesys[™] series is cooled by internal fans. At the installation, care must be taken to allow free air flow into the power supply via the front panel and out of the power supply via the rear panel. The Genesys[™] power supplies have a compact and lightweight package which allows easy installation and space saving in the application equipment.

CAUTION

Observe all torque guidelines within this manual. Over torqueing may damage unit or accessories. Such damage is not covered under manufacturers warranty.

1.3 ACCESSORIES

1.3.1 General

Accessories are delivered with the power supply or separately upon ordering. The list below shows the possible accessories and ordering numbers.

1.3.2 Serial link cable

Serial link cable, for linking power supplies by RS485 communication is provided with the power supply.

Cable description: 0.5m length, shielded, RJ-45 type plugs, 8 contacts (P/N: GEN/RJ45).

1.3.3 Misc. hardware

- *AC Input plug connector (Phoenix Contact, PC 6/4-STF-10,16)
- * Strain relief for AC cord
- * Output terminal shield
- * DB25 plug kit (AMP, 749809-9).
- * Plastic legs for bench mounting.

1.3.4 AC cables

AC cables are not provided with the power supply.

Refer to Table1-1 for recommended AC input cables (customer supplied). Add a non-locking plug approved by the national safety standards of the country of usage.

AC Input Range	AC Input Cable
190-240V~ , Three Phase	Min 4x12AWG (3 wire plus safety ground), stranded copper, 300V, 60°c minimum, rated for 25A. 3m max. length, outer diameter: 9~11mm.
380-415V~ , Three Phase	Min 4x14AWG (3 wire plus safety ground), stranded copper, 600V, 60°c minimum, rated for 15A. 3m max. length, outer diameter: 9~11mm.

Table 1-1: Recommended A	AC input cable
--------------------------	----------------

CHAPTER 2 SPECIFICATIONS

2.1 OUTPUT RATING

MODEL	GEN	8-600	10-500	16-310	20-250	30-170	40-125	60-85	80-65	100-50	150-34	200-25	300-17	400-13	500-10	600-8.5
1.Rated output voltage(*1)	V	8	10	16	20	30	40	60	80	100	150	200	300	400	500	600
2.Rated output current (*2)	A	600	500	310	250	170	125	85	65	50	34	25	17	13	10	8.5
3.Rated output power	W	4800	5000	4960	5000	5100	5000	5100	5200	5000	5100	5000	5100	5200	5000	5100

2.2 INPUT CI	ARACTERISTICS	V	8	10	16	20	30	40	60	80	100	150	200	300	400	500	600	
1.Input voltage/freg. (*3)			3-Phase, 200V models: 170~265Vac, 47~63Hz															
			3-Phase	3-Phase, 400V models: 342~460Vac, 47~63Hz														
2.Maximum	3-Phase, 200V models:		21	22	22	22	22	22	22	22	22	22	22	22	22	22	22	
at 100% load	3-Phase, 400V models:	A	10.5	11	11	12	11	11	11	11	11	11	11	11	11	11	11	
3.Power Facto	r		0.94 @2	00/380Va	c, rated ou	Itput powe	er.			_								
4.Efficiency (*4	4)	%	83 84 84 86 86 88 88 88 88 88							88	88	88	88	88				
5.Inrush current (*5)			3-Phase	200V mo	dels: Les	s than 50	A											
			3-Phase	400V mo	dels: Les	s than 20	A											

2.3 CONSTANT VOLTAGE MODE	V	8	10	16	20	30	40	60	80	100	150	200	300	400	500	600
1.Max. Line regulation (*6)		0.01% c	f rated ou	utput volta	ige											-
2.Max. Load regulation (*7)		0.015%	of rated of	output vol	tage +5m	V										
3.Ripple and noise (p-p , 20MHz) (*8)	mV	75 75 70 75 70 70 70 80 90 120 200 200								350	300	450				
4.Ripple r.m.s., 5Hz~1MHz	mV	8	8	10	10	10	8	8	15	15	20	45	60	70	70	100
5.Temperature coefficient	PPM/°C	50PPM/	IPPM/°C from rated output voltage, following 30 minutes warm-up.													
6.Temperature stability		0.01% o	11% of rated Vout over 8 hrs interval following 30 minutes warm-up. Constant line, load & temp.													
7.Warm-up drift		Less that	ss than 0.05% of rated output voltage +2mV over 30 minutes following power on.													
8.Remote sense compensation/wire	V	2	2 2 2 2 5 5 5 5 5 5 5 5								5	5	5			
9.Up-prog. response time, 0~Vomax.(*9)	mS				30				50						80	100
10.Down-prog. response time Full load(*9)		15		50			80			100						200
No load(*10)	1113	400	500	600	700	800	900	1000	1200	1500	2000	2000	2500	3000	3000	3000
11.Transient response time		Time for	output vo	oltage to r	ecover wi	thin 0.5%	of its rate	ed output	for a load	change '	10~90% c	of rated ou	tput curre	ent.		
	mS	Output s	et-point:	10~100%	, Local se	ense.										
		Less that	uss than 1mS, for models up to and including 100V. 2mS, for models above 100V.													
12.Hold-up time (Typ)	mS	5mSec	Sec Typical. Rated output power.													

2.4 CONSTANT CURRENT MODE	V	8	10	16	20	30	40	60	80	100	150	200	300	400	500	600
1.Max. Line regulation (*6)		0.05% o	.05% of rated output current													
2.Max. Load regulation (*11)		0.1% of	.1% of rated output current													
3.Load regulation thermal drift		Less that	ses than 0.1% of rated output current over 30 minutes following load change.													
4.Ripple r.m.s. 5Hz~1MHz (*12)	mA	1700	1600	1000	700	350	180	120	80	50	50	50	20	15	10	10
5.Temperature coefficient	PPM/°C	70PPM/	°C from	rated outp	ut curren	t, followin	g 30 minu	ites warm	i-up.							
6.Temperature stability		0.01% c	f rated lo	ut over 8h	nrs interva	al followin	g 30 minu	ites warm	-up. Cons	stant line,	load & te	mperature	ə.			
7.Warm-up drift		8~16V r	nodel: Le	ss than ±	0.5% of ra	ated output	ut current	over 30 n	ninutes fo	llowing po	ower on.					
		20V~60	0V mode	I: Less tha	an ±0.25%	6 of rated	output cu	rrent ove	r 30 minu	tes follow	ing powe	on.				

2.5 ANALOG PROGRAMMING AND MONITORING

	-						
1.Vout voltage programming		0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: ±0.5% of rated Vout.					
2.lout voltage programming (*13)		0~100%, 0~5V or 0~10V, user selectable. Accuracy and linearity: ±1% of rated lout.					
3.Vout resistor programming		0~100%, 0~5/10Kohm full scale, user selectable. Accuracy and linearity: ±1% of rated Vout.					
4.lout resistor programming (*13)		100%, 0~5/10Kohm full scale, user selectable. Accuracy and linearity: ±1.5% of rated lout.					
5.On/off control		By electrical Voltage: 0~0.6V/2~15V or dry contact, user selectable logic.					
6.Output current monitor (*13)		0~5V or 0~10V, user selectable. Accuracy: ±1%.					
7.Output voltage monitor		0~5V or 0~10V, user selectable. Accuracy : ±1%.					
8.Power supply OK signal		4~5V-OK, 0V-Fail. 500ohm series resistance.					
9.Parallel operation		Possible, up to 4 units in master/slave mode with two wires current balance connection.					
10.Series operation		Possible (with external diodes), up to 2 units. 600Vdc max. from chassis ground.					
11.CV/CC indicator		Open collector. CC mode: On, CV mode: Off. Maximum voltage : 30V, maximum sink current: 10mA					
12.Enable/Disable		Dry contact. Open: Off, Short: On. Max. voltage at Enable/Disable in: 6V.					
13.Local/Remote analog control		By electrical signal or Open/Short: 0~0.6V or short: Remote, 2~15V or open: Local.					
14.Local/Remote analog indicator		Open collector. Local: Open, Remote: On. Maximum voltage: 30V, maximum sink current: 10mA.					

2.6 PROGRAMMING AND READ	BACK ((RS232/485, Optional LAN/IEEE Interface)														
	V	8	10	16	20	30	40	60	80	100	150	200	300	400	500	600
1.Vout programming accuracy (*14)		0.05% of	f rated ou	tnut volta	ne											
2. lout programming accuracy (*13)		0.1% of	actual out	put curre	nt +0.3%	of rated o	utput cur	ront								
3. Vout programming resolution																
4. lout programming resolution		0.002 / of rated output runaye														
5. Vout readback accuracy		0.002/0	0.002 // of rated output Cullent													
6 lout readback accuracy (*13)		0.00 /0 of rated output Vollage														
7 Vout readback resolution	% of rated															
8 Jour readback resolution	output voltage % of rated	0.002%	0.011%	0.007%	0.000%	0.004%	0.003%	0.002%	0.002%	0.011%	0.007%	0.000%	0.004%	0.003%	0.00370	0.002%
0.10011000000010000	output current	0.002%	0.003%	0.004%	0.005%	0.000%	0.009%	0.002%	0.002%	0.003%	0.004%	0.003%	0.000%	0.000%	0.011 /0	0.002%
2.7 PROTECTIVE FUNCTIONS	V	8	10	16	20	30	40	60	80	100	150	200	300	400	500	600
1.Foldback protection		Output s	hut-down	when po	wer suppl	y change	from CV	to CC Us	er preseta	ble.						
2.Over-voltage protection (OVP)		Inverter	shut-dowr	n, manua	I reset by	AC input	recycle or	by OUT	button or I	by commi	unication	oort com	mand.			
3.Over-voltage trip point	V	0.5~10	0.5~12	1~18	1~24	2~36	2~44	5~66	5~88	5~110	5~165	5~220	5~330	5~440	5~550	5~660
4.Output under voltage limit (UVL)		Preset b	y front pa	nel or cor	mmunicati	on port. F	Prevents f	rom adjus	ting Vout	below lim	it. Does n	ot affect	analog			
		program	mina.					,	5				5			
5.Over temperature protection		User sel	User selectable latched or non latched													
	-		,													
2.8 FRONT PANEL																
1.Control functions		Vout/lout manual adjust by separate encoders (coarse and fine adjustment).														
		OVP/UV	OVP/UVL manual adjust by Vout. Adjust encoder.													
		Address	selection	by Volta	ge Adjust (encoder. I	No of add	Iresses:37	l.							
		Go to loo	cal contro	l.												
		Output o	Output on/off													
		AC on/of	ff													
		Front pa	nel Lock													
		Foldback	k control													
		Baud rat	Baud rate selection: 1200, 2400, 4800, 9600 and 19200.													
		Re-start	modes (a	utomatic	restart, sa	afe mode)).									
2.Display		Vout:	Vout: 4 digits, accuracy: 0.05% of rated output voltage +/-1count.													
		lout:	lout: 4 digits, accuracy: 0.2% of rated output current +/-1count.													
3 Indications		VOLTAG	E, CURR	ENT, ALA	ARM, FINE	E, PREVI	ew, foli	DBACK, F	REMOTE(RS232,R	S485,IEE	E), OUTF	PUT ON,			
		FRONT	PANEL LO	OCK.												
2.9 ENVIRONMENTAL CONDITI	ONS															
1 Operating temperature		0~50°C	100% loa	d												
2 Storage temperature		20~85°C														
3 Operating humidity		-20°65 U														
4 Storage humidity	%	10~05%	20~90% KH (no condensation).													
5 Altitude	%	Maximur	10~95% KH (no condensation).													
0.7 111000		Maximu	Maximum Subum. Derate output current by 2%/ 100m above 2000m.													
2.10 MECHANICAL																
1.Cooling		Forced a	ir coolina	by intern	al fans.											
2.Weight	Ka	Less that	n 16Ka.													
3.Dimensions (WxHxD)	mm	W: 423.	W: 423 H: 88 D: 442.5 (Refer to Outline drawing)													
4.Vibration		MIL-810	-, method	514.5			<i></i>									
5.Shock		Less that	n 20G, ha	If sine, 1'	1mS. Unit	is unpack	ked.									
L			, -	,.												
2.11 SAFETY/EMC																
1.Safety standards:		IEC 610	10-1, UL 6	61010-1, C	CSA22.2 N	o. 61010-	1, EN 610	10-1								
1 1 Interface classification		Vout<60V Models: Output and Sense are Non Hazardous														
		all communication/control interfaces (RS232/485, IEEE, Isolated Analog, LAN, Remote Programming and Monitoring are Non Hazardous														
		60V≤Vout≤300V Models: Output and Sense are Hazardous														
		communication/control interfaces: RS232/485, IEEE, Isolated Analog, LAN, Remote Programming and Monitoring (pins 1-3, pins 14-16) are														
		Non Hazardous, Remote Programming and Monitoring (pins 8-13, pins 21-25) are Hazardous.														
		300V <vout≤600v and="" are="" hazardous<="" models:="" output="" sense="" td=""></vout≤600v>														
		a) Floating output or Output "-" connected to ground:														
		RS232/485, IEEE, Isolated Analog, LAN, Remote Programming and Monitoring (pins 1-3, pins 14-16) are Non Hazardous; Remote Programming														
		and Monitoring (pins 8-13, pins 21-25) are Hazardous.														
	1	b) Output "+" connected to ground and Vout >400VDC: RS232/485, IEEE, Isolated Analog, LAN, Remote Programming and Monitoring (all pins)														
1																
	_	are Haz	ardous													
		are Haz Vout<60	ardous V Models:	Hozorda	10): 101014		Input N-	n Hozarda	1040	DC/1min	Input Cr-	und: 000		<u> </u>		
		are Haz Vout<60 Input-Ou	ardous V Models: itput (Non	Hazardou	us): 4242V	DC/1min.,	, Input-No	n Hazardo	ous: 4242V	'DC/1min.	Input-Gro	und: 2828	3VDC/1mi	n.		
		are Haz Vout<60 Input-Ou 60V≤Vou	ardous V Models: itput (Non ut≤100V N	Hazardou Iodels:	us): 4242V	DC/1min.,	, Input-No	n Hazardo	us: 4242V	DC/1min.	Input-Gro	und: 2828	3VDC/1mi	n.		
1.2 Withstand voltage		are Haz Vout<60 Input-Ou 60V≤Vou Input-Ou	ardous V Models: itput (Non it≤100V M itput (Haza Hazardous	Hazardou lodels: ardous): 2	us): 4242V 2600VDC/1	DC/1min.,	, Input-No ut-Non Ha	n Hazardo zardous: 4 put (Haza	ous: 4242V 242VDC/1	DC/1min.	Input-Gro t-Ground:	und: 2828 2828VDC	3VDC/1mi C/1min.,	n.		

IEC/EN 55032, IEC/EN 55024, IEC/EN 61000-3-3, FCC part 15-subpart B, VCCI

Mohm >100MΩ at 25°C, 70%RH, Output to Ground 500VDC.

EN55032-class A, FCC-class A, VCCI-class A.

EN55032-class A, FCC-class A, VCCI-class A.

1.3 Isolation resistance 2. EMC standards (*15):

2.1Conducted emmision 2.2 Radiated emission Input-Output (Hazardous): 4000VDC/1min., Input-Non Hazardous: 4242VDC/1min. Input-Ground: 2828VDC/1min., Output (Hazardous)-Non Hazardous: 3550VDC/1min. Output (Hazardous)-Ground: 2670VDC/1min.
NOTES:

- *1: Minimum voltage is guaranteed to maximum 0.2% of the rated output voltage.
- *2: Minimum current is guaranteed to maximum 0.4% of the rated output current.
- *3: For cases where conformance to various safety standards (UL, IEC etc.) is required, to be described as 190~240Vac (50/60Hz) for 3-Phase 200V models, and 380~415Vac (50/60Hz) for 3-Phase 400V models.
- *4: 3-Phase 200V models: at 200Vac input voltage.3-Phase 400V: at 380Vac input voltage. With rated output power.
- *5: Not including EMI filter inrush current, less than 0.2mSec.
- *6: 3-Phase 200V models: 170~265Vac, constant load. 3-Phase 400V models: 342~460Vac, constant load.
- *7: From No-load to Full-load, constant input voltage. Measured at the sensing point in Remote Sense.
- *8: For 8V~300V models: measured with JEITA RC-9131A (1:1) probe. For 600V model: measured with 10:1probe.
- *9: From10% to 90% or 90% to 10% of rated output voltage, with rated , resistive load.
- *10: From 90% to 10% of rated output voltage.
- *11: For load voltage change, equal to the unit voltage rating, constant input voltage.
- *12: For 8V~16V models the ripple is measured at 2V to rated output voltage and rated output current. For other models, the ripple is measured at 10~100% of rated output voltage and rated output current.
- *13: The Constant Current programming, readback and monitoring accuracy does not include the warm-up and Load regulation thermal drift.
- *14: Measured at the sensing point.
- *15: Signal and control ports interface cables length: Less than 3m

2.12 SUPPLEMENTAL CHARACTERISTICS

The supplemental characteristics give typical but non-warranted performance characteristics. The supplemental characteristics are useful in assessing applications for the power supply. Several kinds of supplemental characteristics are listed below.

- 1. Evaluation Data: Typical performance of the power supply.
- 2. Reliability Data: Reliability performance of the power supply.
- 3.EN61000 Data: Performance of the power supply under EN61000 test conditions.
- 4.EMI Data: Typical EMI (conducted and radiated) performance of the power supply.

The supplemental characteristics data is held in each Lambda sales and service facility. For further details please contact the Lambda office nearest you.

CHAPTER 3 INSTALLATION

3.1 GENERAL

This chapter contains instructions for initial inspection, preparation for use and repackaging for shipment. Connection to PC, setting the communication port and linking Genesys[™] power supplies are described in Chapter 7.

WARNING

The Genesys[™] series is intended only for installation in Restricted Access Location (RAL). Access to Hazardous parts (rear side of the power supply) shall be prevented after installation.

WARNUNG

Die Genesys™ ist ausschließlich für die Installation in zugangsbeschränkten Bereichen (Restricted Access Location, RAL) gedacht. Der Zugang zu gefährlichen Teilen (Rückseite des Geräts) nach der Installation ist zu unterbinden.

NOTE

Genesys™ power supplies generate magnetic fields which might affect the operation of other instruments. If vour equipment is susceptible to magnetic field, do not position it adjacent to the power supply.

WARNING

To avoid electric shock hazard, do not insert conductive parts through the front panel slits.

WARNUNG

Um die Gefahr eines elektrischen Schlags zu vermeiden, stecken Sie keinerlei elektrisch leitenden Teile durch die Schlitze der Frontabdeckung.

3.2 PREPARATION FOR USE

In order to be operational the power supply must be connected to an appropriate AC source. The AC source voltage should be within the power supply specification. Do not apply power before reading, Section 3.6 and 3.7. Table 3-1 below, describes the basic setup procedure. Follow the instructions in Table 3-1 in the

sequence given to prepare the power supply for use.

Step no.	Item	Description	Reference
1	Inspection	Initial physical inspection of the power supply	Section 3.3
2	Installation	Installing the power supply, Ensuring adequate ventillation.	Section 3.4 Section 3.5
3	AC source	AC source requirements Connecting the power supply to the AC source.	Section 3.6 Section 3.7
4	Test	Turn-on checkout procedure.	Section 3.8
5	Load connection	Wire size selection. Local /Remote sensing. Single or multiple loads.	Section 3.9
6	Default setting	The power supply setting at shipment.	Section 7.2.1

Table 3-1: Basic setup procedure

3.3 INITIAL INSPECTION

Prior to shipment this power supply was inspected and found free of mechanical or electrical defects. Upon unpacking of the power supply, inspect for any damage which may have occured in transit.

The inspection should confirm that there is no exterior damage to the power supply such as broken knobs or connectors and that the front panel and meters face are not scratched or cracked. Keep all packing material until the inspection has been completed. If damage is detected, file a claim with carrier immediately and notify the Lambda sales or service facility nearest you.

3.4 RACK MOUNTING

The Genesys[™] power supply series is designed to fit in a standard 19" equipment rack.

- **3.4.1 To install the Power Supply in a rack:** 1. Use the front panel rack-mount brackets to install the power supply in the rack.
- 2. Use a support bar to provide adequate support for the rear of the power supply. Do not obstruct the air exhaust at the rear panel of the unit.

3.4.2 Rack Mount Slides (optional):

CAUTION

VORSICHT

Ensure that the screws used to attach the slides to the unit do not penetrate more than 6mm into the sides of the unit.

Stellen Sie sicher, dass die Schrauben, mit denen die Schienen am Gerät angebracht werden, nicht mehr als 6mm in die Seiten des Geräts hineinragen.

Use rack mount slides: General Devices Catalog Number: C-300-S-116. For Part/Drawing Number: CC3001-00-0160 or equivalent to install the unit in a standard 19" equipment rack. Refer to Fig. 3-1 for slides assembly instructions. Use three #10-32x0.38"(max.) screws at each side. To prevent internal damage, use the specified screw length only.

3.4.3 Plastic Supporting legs

Use the four plastic legs supplied with the unit, when the power supply is mounted on a surface or when units are stacked without rack support. When using the plastic legs, maximum three units can be stacked.

3.5 LOCATION, MOUNTING AND COOLING

This power supply is fan cooled. The air intake is at the front panel and the exhaust is at the rear panel. Upon installation allow cooling air to reach the front panel ventilation inlets. Allow minimum 10cm (4 Inch) of unrestricted air space at the front and the rear of the unit.

The power supply should be used in an area that the ambient temperature does not exceed +50°C.

3.6 AC SOURCE REQUIREMENTS

The Genesys[™] series designed for use in TN, TT and IT power distribution systems.Depending on its input option, the Genesys[™] 5000W series can be operated from a nominal 190V to 240V, three phase, 47~63Hz or from a nominal 380V to 415V, three phase, 47~63Hz. The input voltage range and current required for each model is specified in Chapter 2. Ensure that under heavy load, the AC voltage supplied to the power supply does not fall below the specifications described in Chapter 2.

3.7 AC INPUT POWER CONNECTION

CAUTION

Connection of this power supply to an AC power source should be made by an electrician or other qualified personnel.

Der Anschluss dieses Gerätes an ein AC-Versorgungsnetz sollte durch einen Elektriker oder anderes entsprechend qualifiziertes Personal erfolgen.

The power supply shall be connected to the AC source via protective device (circuit breaker, fuses, ...etc.) rated 30A max. for three phase 190-240Vac models or 20A max. for three phase 380-415Vac models.

WARNING

WARNUNG

There is a potential shock hazard if the power supply chassis (with cover in place) is not connected to an electrical safety ground via the safety ground in the AC input connector Es besteht die Gefahr eines elektrischen Schlags, wenn das Gehäuse des Netzteils (mitsamt Abdeckung) nicht über den PE-Leiter des Netzkabels mit einer Schutzerde verbunden ist.

WARNING

Some components inside the power supply are at AC voltage even when the On/Off switch is in the "Off " position. To avoid electric shock hazard, disconnect the line cord and load and wait two minutes before removing cover.

WARNUNG

Einige Komponenten innerhalb des Netzteils führen Netzspannung, selbst wenn der On/Off-Schalter in der Position "Off" steht. Um die Gefahr eines elektrischen Schlags zu vermeiden, trennen Sie es vom Netz und warten Sie zwei Minuten, bevor Sie die Abdeckung entfernen.

CAUTION

AC Input Wires No Conductor Pretreatment: Phoenix Contact clamping parts are designed so that all kinds of copper conductors can be clamped without pretreatment.

It is forbidden to solder the conductors. The solder tin yields and fractures under high pressure. The result is increased contact resistance and an excessive temperature rise. In addition, corrosion caused by pickling or fluxes has been observed on soldered conductor ends. Notch fractures at the transition point from the rigid to the flexible conductor area are also possible.

The power supply ON/OFF switch is not the main disconnect device and does not completely disconnect all the circuits from the AC source.

An appropriately rated disconnect device such as circuit breaker, type B plug on power cord, ...etc., shall be provided in the final installation. The disconnect device shall comply with UL/IEC 60950-1 requirements and shall be easily accessible.

3.7.1 AC Input Connector

The AC input connector is a header (Phoenix Contact P/N:PC6-16/4-GF-10, 16) with a screw plug in connector (Phoenix Contact P/N: PC 6/4-STF-10, 16), located on the rear panel. Use suitable wires and tightening torgue as follows:

1. Wire diameter: 12AWG for three-phase 200V models and

14AWG for three-phase 400V models. Refer to Table 1-1 for details.

2. Tightening torque: 10.7-13.4Lb-inch. (1.2-1.5Nm).

3.7.2 AC Input Cord

WARNING

AC input cord is not provided with power supply.

Refer to section 1.3.4 for details of the recommended AC Input cords and to section 3.7 for disconnected device requirement.

3.7.3 AC Input Wire Connection

Das Netzteil wird ohne AC-Netzkabel ausgeliefert.

In Abschnitt 1.3.4 finden Sie Empfehlungen für die zu verwendenden AC-Netzkabel, und Abschnitt 3.7 gibt Hinweise zur vollständigen Trennung des Gerätes vom Netz.

- 1. Strip the outside insulation of the AC cable approx. 10cm. Trim the wires so that the ground wire is 10mm longer than the other wires. Strip 10mm at the end of each of the wires.
- 2. Unscrew the base of the strain relief from the helix-shaped body. Insert the base through the outside opening in the AC input cover and screw the locknut securely (11-14 Lb-inch.) into the base, from the inside.
- 3.Slide the helix-shaped body onto the AC cable. Insert the stripped wires through the strain relief base until the outer cable jacket is flush with the edge of the base. Tighten (16-18 Lb-inch.) the body to the base while holding the cable in place. Now the cable is securely fastened inside the strain relief. Refer to Fig.3-2.

Fig.3-2: Stripped Wires installed in Strain Relief

16

4.Connect the AC wires to the terminals of the input plug supplied with the unit. To connect the wires, loosen the terminal screw, insert the stripped wire into the terminal and tighten the screw securely (10.7-13.4 Lb-inch.). Refer to Fig. 3-3 for details. Pay attention to connect the wires according to the polarity marking on the plug.

- 5. Connect the AC input plug to the AC input connector at the power supply rear panel. Fasten the plug to the connector using the two screws at each side of the plug. (Tightening torque:10.7-13.4Lb inch)
- 6. Route the wires inside the cover to prevent pinching. Fasten the cover to the unit using the M3x8 Flat Head screws are provided. Refer to Fig.3-4 for details.

3.8 TURN-ON CHECKOUT PROCEDURE

3.8.1 General

The following procedure ensures that the power supply is operational and may be used as a basic incoming inspection check. Refer to Fig.4-1 and Fig.4-2 for the location of the controls indicated in the procedure.

3.8.2 Prior to Operation

- 1. Ensure that the power supply is configured to the default setting:
 - -AC On/Off switch at Off position.
 - -Dip switch : All positions at Down ("Off") position.
 - -Sense connector : Configured to Local Sense as shown in Fig.3-5:

Plug P/N: MC 1.5/5-ST-3.81 (Phoenix)

Fig.3-5: Sense connector default connection

-For units equipped with IEEE option, ensure that the IEEE_En switch is in Up (default) position (Refer to Fig.4-2, item 9 for location), if checkout is to be done in IEEE mode.

- 2. Connect the unit to an AC source as described in section 3.7.
- 3. Connect a DVM with appropriate cables for the rated voltage to the output terminals.
- 4. Turn the front panel AC power switch to On.

3.8.3 Constant Voltage Check

- 1. Turn on the output by pressing OUT pushbutton so the OUT LED illuminates.
- 2. Observe the power supply VOLT display and rotate the Voltage encoder. Ensure that the output voltage varies while the VOLT encoder is rotated. The minimum control range is from zero to the maximum rated output for the power supply model. Compare the DVM reading with the front panel VOLT display to verify the accuracy of the VOLT display. Ensure that the front panel VOLT LED is on.
- 3. Turn off the front panel AC power switch.

3.8.4 Constant Current Check

- 1. Ensure that the front panel AC power switch is at Off position and the DVM connected to the output terminals shows zero voltage.
- 2. Connect a DC shunt across the output terminals. Ensure that the shunt and the wires' current ratings are higher than the power supply rating. Connect a DVM to the shunt.
- 3. Turn the front panel AC power switch to On position.
- 4. Turn on the output by pressing OUT pushbutton so the OUT LED illuminates.
- 5. Observe the power supply CURRENT display and rotate the CURRENT encoder. Ensure that the output current varies while the CURRENT encoder is rotated. The minimum control range is from zero to the maximum rated output for the power supply model. Compare the DVM reading with the front panel CURRENT display to verify the accuracy of the CURRENT display. Ensure that the front panel CURRENT LED is on.
- 6. Turn off the front panel AC power switch.
- 7. Remove the shunt from the power supply output terminals.

3.8.5 OVP Check

Refer to Section 5.3 for explanation of the OVP function prior to performing the procedure below.

- 1. Turn the front panel AC power switch to On position and turn on the output by pressing OUT pushbutton.
- 2. Using the VOLT encoder, adjust the output voltage to approx. 10% of the unit voltage rating.
- 3. Momentarily press the OVP/UVL button so that the CURRENT display shows "OUP". The VOLTAGE display will show the last setting of the OVP level.
- 4. Rotate the VOLT encoder CCW to adjust the OVP setting to 50% of the unit voltage rating.
- 5. Wait a few seconds until the VOLT display returns to show the output voltage.
- 6. Adjust the output voltage toward it's maximum and check that the output voltage cannot be increased more than the OVP setting.
- 7. Adjust OVP limit to the maximum by repeating step 3 and rotating the VOLT encoder CW.

3.8.6 UVL Check

Refer to Section 5.4 for explanation of the UVL function prior to performing the procedure below.

- 1. Press the OVP/UVL button TWICE so that the CURRENT display shows "UUL". The VOLTAGE display will show the last setting of the UVL level.
- 2. Rotate the VOLT encoder to adjust the UVL level to approx. 10% of the unit voltage rating.
- 3. Wait a few seconds until the VOLT display returns to show the output voltage.
- 4. Adjust the output voltage toward it's minimum and check that the output voltage cannot be decreased below the UVL setting.
- 5. Adjust the UVL limit to the minimum by repeating step1 and rotating the VOLT encoder CCW.

3.8.7 Foldback Check

Shorting the output may expose the user to hazardous voltages. Observe proper safety procedures.

WARNUNG

Das Kurzschließen des Ausgangs kann den Anwender einer gefährlichen Spannung aussetzen. Beachten Sie die entsprechenden Sicherheitsrichtlinien.

Refer to Section 5.5 for explanation of the FOLD function prior to performing the procedure below.

- 1. Ensure that the output voltage is set to approx. 10% of the unit rating.
- Adjust the CURRENT encoder to set the current limit to approx. 10% of the unit rating.
 Momentarily press the FOLD button. Ensure that the FOLD LED illuminates. The output
- Momentarily press the FOLD button. Ensure that the FOLD LED interminates. The output voltage remains unchanged.
 Short the output terminals momentarily (approx. 0.5 sec.). Ensure that the output voltage falls to zero, the VOLT display shows "Fb" and the ALARM LED blinks.
 Press the FOLD button again to cancel the protection. The output voltage remains zero.
 Press OUT button. Ensure that the output voltage returns to it's last setting.
 Turn the output off by pressing OUT button. Ensure that the VOLT display shows "OFF".

- **3.8.8 Address Setting** 1. Press and hold the REM/LOC button for approx. 3sec. The VOLT display will show the communication port address.
- 2. Using the VOLT adjust encoder, check that the address can be set within the range of 0 to 30.

- **3.8.9 Baud Rate Setting** 1. Press and hold the REM/LOC button for approx. 3sec. The CURRENT display will show the
- Communication port Baud Rate.
 Using The CURRENT adjust encoder, check that the Baud Rate can be set to 1200, 2400, 4800, 9600 and 19200.

3.9 CONNECTING THE LOAD

WARNING

Turn off the AC input power before making or Schalten Sie die Netzversorgung aus, bevor changing any rear panel connection. Ensure that Sie Verbindungen an der Rückseite entfernen all connections are securely tightened before oder ändern. applying power.

Stellen Sie sicher, dass alle Verbindungen fest und sicher angebracht sind.

3.9.1 Load Wiring

The following considerations should be made to select wiring for connecting the load to the power supply:

* Current carrying capacity of the wire (refer to 3.9.2)

- * Insulation rating of the wire should be at least equivalent to the maximum output voltage of the power supply.
- * Maximum wire length and voltage drop (refer to 3.9.2)
- * Noise and impedance effects of the load wiring (refer to 3.9.4).

3.9.2 Current Carrying Capacity

Two factors must be considered when selecting the wire size:

1. Wires should be at least heavy enough not to overheat while carrying the power supply load current at the rated load, or the current that would flow in the event the load wires were shorted, whichever is areater.

2. The load cables between the power supply outputs and the load must be a specified. The cable connections must be secured to required torque spec. Failure to meet these requirements could cause substantial voltage losses, terminal over-heating, and insulation degradation. The output styles vary depending of the output voltage range.

Output Voltage Range 8V to 100V models: refer to Table 3-2 and Fig. 3-6. Output Voltage Range 150V to 600V models: refer to Fig. 3-8.

The output connections are protected with a metal cover. To connect cables, remove the cover. Connect the proper size cables with nuts and bolts.

Proper torque (as per bolt size) should be applied to the bolts.

Typical cable sizes for load connections are shown below. Use cables that meet requirements for current, voltage, length, temperature and termination.

CURRENT (Amps) Io	RECOMMENDED COPPER WIRE SIZE
lo≤50	6 AWG.
50 <lo≤100< td=""><td>0 AWG.</td></lo≤100<>	0 AWG.
100 <lo≤187.5< td=""><td>1 x 0000 AWG.</td></lo≤187.5<>	1 x 0000 AWG.
187.5 <lo≤333< td=""><td>2 x 0000 AWG.</td></lo≤333<>	2 x 0000 AWG.
333 <lo≤700< td=""><td>3 x 0000 AWG.</td></lo≤700<>	3 x 0000 AWG.
700 <lo≤1000< td=""><td>4 x 0000 AWG.</td></lo≤1000<>	4 x 0000 AWG.

Table 3-2:Recommended cable size for output connection

3.9.3 Wire termination

The wires should be properly terminated with terminals securely attached. DO NOT use unterminated wires for load connection at the power supply.

CAUTION

When local sensing, a short from +LS or +S to -V or -S or -LS, will cause damage to the power supply. Reversing the sense wires might cause damage to the power supply in local and remote sensing. (Do not connect -S to +V or +S to -V.)

Vermeiden Sie bei lokalem Sensing unbedingt einen Kurzschluss zwischen -V und +LS oder +S sowie zwischen -LS und -V oder -S. Ein solcher Kurzschluss würde das Netzteil beschädigen. Ein Vertauschen der Sense-Leitungen kann das Netzteil bei lokalem wie bei Remote-Sensing beschädigen. (Verbinden Sie daher nicht -S mit +V oder +S mit -V).

3.9.4 Noise and Impedance Effects

To minimize the noise pickup or radiation, the load wires and remote sense wires should be twistedpairs to the shortest possible length. Shielding of sense leads may be necessary in high noise environments. Where shielding is used, connect the shield to the chassis via a rear panel Ground screw. Even if noise is not a concern, the load and remote sense wires should be twisted-pairs to reduce coupling, which might impact the stability of power supply. The sense leads should be separated from the power leads.

Twisting the load wires reduces the parasitic inductance of the cable which could produce high frequency voltage spikes at the load and the output of power supply, because of current variation in the load itself.

The impedance introduced between the power supply output and the load could make the ripple and noise at the load worse than the noise at the power supply rear panel output. Additional filtering with bypass capacitors at the load terminals may be required to bypass the high frequency load current.

3.9.5 Inductive loads

Inductive loads can produce voltage spikes that may be harmful to the power supply. A diode should be connected across the output. The diode voltage and current rating should be greater than the power supply maximum output voltage and current rating. Connect the cathode to the positive output and the anode to the negative output of the power supply.

Where positive load transients such as back EMF from a motor may occur, connect a surge suppressor across the output to protect the power supply. The breakdown voltage rating of the suppressor must be approximately 10% higher than the maximum output voltage of the power supply.

3.9.6 Making the load connections

8V to 100V Models

Refer to Fig.3-6 for connection of the load wires to the power supply bus-bars and to Fig.3-7 for mounting the bus-bars enclosure to the chassis.

verbiegen.

Fig. 3-6: Load wires connection, 8V to 100V models.

Fig. 3-7: Bus-bars shield mounting, 8V to 50V models

150V to 600V Models

Hazardous voltages exist at the outputs and the load connections. To protect personnel against accidental contact with hazardous voltages, ensure that the load and its connections have no accessible live parts. Ensure that the load wiring insulation rating is greater than or equal to the maximum output voltage of the power supply.

Fig. 3-8: Bus-bars shield mounting, 60V to 100V models

An den Ausgängen und den Lastverbindungen liegen gefährliche Spannungen an. Um dan Anwender vor einem versehentlichen Kontakt mit gefährlichen Spannungen zu schützen, stellen, Sie sicher, dass die Last und ihre Verbindungen keine berührbaren spannungsführenden Teile aufweisen. Stellen Sie auch sicher, dass die Isolierung aller Kabel mindestens für die maximal mögliche Ausgangsspannung des Netzteils ausgelegt ist.

CAUTION

Output Load Wires No Conductor Pretreatment: Phoenix Contact clamping parts are designed so that all kinds of copper conductors can be clamped without pretreatment.

It is forbidden to solder the conductors. The solder tin yields and fractures under high pressure. The result is increased contact resistance and an excessive temperature rise. In addition, corrosion caused by pickling or fluxes has been observed on soldered conductor ends. Notch fractures at the transition point from the rigid to the flexible conductor area are also possible.

The 150V to 600V models have a four terminal wire clamp output connector: Phoenix Contact P/N: FRONT4-H-7.62/4

The two left terminals are the positive outputs and the other two right terminals are the negative outputs.Max. 30A per terminal.

The connector requirements are as follows: 1. Wires: AWG18 to AWG10.

- 2. Tightening torque: 4.4-5.3Lb-inch. (0.5-0.6Nm).

Follow the below instructions for connection of the load wires to the power supply:

- 1. Strip approx.10mm at the end of each of the load wires.
- 2. Loosen the connector terminal screws.
- 3. Loosen screws "B" from enclosure bottom cover to release the shutter.
- 4. Insert stripped wires into enclosure bottom cover opening and then to the terminals, tighten the terminals screws securely (see fig.3-9)
- 5. Assemble the enclosure top cover to the chassis as shown in Fig.3-9,using clamp "A1" and screw "A2",tighten screw "A2" (tightening torque:4.8 5.3 Lb-inch).

Fig.3-9: Load wires connection to the output connector

- 6. Assemble the enclosure bottom cover to it's place, as shown in Fig.3-10, using screws "C", 3 places (tightening torque 4.8-5.3 Lb-inch).
- 7. Slide down the shutter to secure load wires in place, and tighten screws "B".

Fig.3-10: Enclosure assembly

3.9.7 Connecting single loads, local sensing (default).

Fig.3-11 shows recommended load and sensing connections for a single load. The local sense lines shown are default connections at the rear panel J2 sense connector. Local sensing is suitable for applications where load regulation is less critical.

3.9.8 Connecting single loads, remote sensing

Fig.3-12 shows recommended remote sensing connection for single loads.

Remote sensing is used when, in Constant Voltage mode, the load regulation is important at the load terminals. Use twisted or shielded wires to minimize noise pick-up. If shielded wires are used, the shield should be connected to the ground at one point, either at the power supply chassis or the load ground. The optimal point for the shield ground should be determined by experimentation. Refer to the power supply specifications for maximum voltage drop allowed on the load wires.

Load lines. Twisted pair

Fig.3-12: Remote sensing, single load

3.9.9 Connecting multiple loads, radial distribution method

Fig.3-13 shows multiple loads connected to one supply. Each load should be connected to the power supply's output terminals using separate pairs of wires. It is recommended that each pair of wires will be as short as possible and twisted or shielded to minimize noise pick-up and radiation. The sense wires should be connected to the power supply output terminals or to the load with the most critical load regulation requirement.

Fig.3-13: Multiple loads connection, radial distribution, local sense

3.9.10 Multiple load connection with distribution terminals

If remotely located output distribution terminals are used, the power supply output terminals should be connected to the distribution terminals by a pair of twisted and/or shielded wires. Each load should be separately connected to the remote distribution terminals (see Fig.3-14).

If remote sensing is required, the sensing wires should be connected to the distribution terminals or at the most critical load

Fig.3-14: Multiple loads connection with distribution terminal

3.9.11 Grounding outputs

Either the positive or negative output terminals can be grounded. To avoid noise problems caused by common-mode current flowing from the load to ground, it is recommended to ground the output terminal as close as possible to the power supply chassis ground.

Always use two wires to connect the load to the power supply regardless of how the system is grounded.

Note

Models up to 100V (including) can float between outputs to ground no more than +/-100V. Models above 100V can float between outputs to ground no more than \pm -600V.

Note

According to Safety Standards, Voltage < 60V considered Non-Hazardous. Models up to 50V (including) with floating outputs to ground less than +/-60V considered as Non-Hazardous.

Warning

According to Safety Standards, Voltage >60V considered Hazardous. All models include models up to 50V with floating outputs to ground more than +/-60V considered as Hazardous.

Anmerkung

Bei Modellen mit bis zu 100 V Nennausgangsspannung darf der Potentialunterschied zwischen den Ausgängen und der Gehäuse-Erdung nicht mehr als +/-100 V betragen.Bei Modellen über 100V Nennausgangsspannung darf der Potentialunterschied zwischen Ausgang und Gehäuse-Erdung nicht mehr als +/-600V betragen.

Anmerkung

Gemäß den Sicherheitsnormen gilt eine Spannung < 60V als ungefährlich.Modelle bis einschliesslich 50V mit erdfreien Ausgängen unter +/-60V gelten als nicht gefährlich.

Warnung

Gemäß den Sicherheitsnormen gilt eine Spannung > 60V werden als gefährliche Spannung definiert. Alle Modelle umfassen Netzteile bis zu 50V mit erdfreien Ausgängen welche mehr als +/-60Vaufweisen, die als gefährlich gelten.

Isolated Analog, LAN, Remote Programming and Monitoring (all pins), when using power supplies with rated or combined voltage greater than 400V with the Positive Output of the power supplies is grounded. Do not connect the Positive Output to ground when using the RS232/485, IEEE, Isolated Analog, LAN, Remote Programming and Monitoring (all pins) under the above conditions.

3.10 LOCAL AND REMOTE SENSING

An den Schnittstellen RS232/485, IEEE, Isolated Analog, LAN und der standard analogen Programmierung und Rücklesung (alle Pins) besteht die Gefahr eines Stromschlags, wenn Stromversorgungen mit einer Nenn- oder in Reihe geschaltete Spannung von mehr als 400V verwendet werden und der positive Lastanschluss der Stromversorgungen geerdet ist. Verbinden Sie den positiven Lastanschluss nicht mit Masse,

Verbinden Sie den positiven Lastanschluss nicht mit Masse, wenn Sie RS232/485, IEEE, Isolated Analog, LAN und der standard analogen Programmierung und Rücklesung (alle Pins) unter den oben genannten Bedingungen verwenden.

The rear panel J2 sense connector is used to configure the power supply for local or remote sensing of the output voltage. Refer to Fig.3-15 for sense connector location.

3.10.1 Sense wiring

WARNING

There is a potential shock hazard at the sense connector when using a power supply with a rated output voltage greater than 50V. Local sense and remote sense wires should have a minimum insulation rating equivalent or greater than the maximum output voltage of the power supply. Ensure that the connections at the load end are shielded to prevent accidental contact with hazardous voltages.

WARNUNG

An den Anschlüssen für die Sense-Leitungen besteht bei Stromversorgungen mit einer Nennausgangsspannung von mehr als 50V die Gefahr eines elektrischen Schlags. Sense-Leitungen für lokales wie für Remote-Sensing sollten eine Isolierung aufweisen, die mindestens für die maximal mögliche Ausgangsspannung des Netzteils ausgelegt ist. Stellen Sie sicher, dass die Verbindungen an der Last gegen versehentliches Berühren bei gefährlichen Spannungen isoliert sind.

3.10.2 Local sensing

The power supply is shipped with the rear panel J2 sense connector wired for local sensing of the output voltage. See Table 3-4 for J2 terminals assignment. With local sensing , the output voltage regulation is made at the output terminals. This method does not compensate for voltage drop on the load wires, therefore it is recommended only for low load current applications or where the load regulation is less critical.

Fig.3-15: Sense connector location

Terminal	Function
J2-1	Remote positive sense (+S).
J2-2	Local positive sense. Connected internally to the positive output terminal (+LS).
J2-3	Not connected (NC).
J2-4	Local negative sense. Connected internally to the negative output terminal (-LS).
J2-5	Remote negative sense (-S).

Table 3-4: J2 terminals

3.10.3 Remote sensing

WARNING

There is a potential shock hazard at the sense point when using power supply with a rated output voltage greater than 50V. Ensure that the connections at the load end are shielded to prevent accidental contact with hazardous voltages.

CAUTION

When using shielded sense wires, ground the shield in one place only. The location can be the power supply chassis or one of the output terminals.

WARNUNG

An den Anschlüssen für die Sense-Leitungen besteht bei Stromversorgungen mit einer Nennausgangsspannung von mehr als 50 V die Gefahr eines elektrischen Schlags. Stellen Sie sicher, dass die Verbindungen an der Last gegen versehentliches Berühren bei gefährlichen Spannungen isoliert sind.

VORSICHT

Wenn Sie abgeschirmte Sense-Leitungen verwenden, erden Sie die Abschirmung nur an einer Seite. Dies kann entweder das Gehäuse des Netzteils oder eine der Ausgangsklemmen sein.

1.Wird das Netzteil mit "Remote-Sensing" betrieben

Lastkabel ist nicht angeschlossen, schalted das

schalten Sie den Netz-On/Off-Schalter auf "Off"

2.Wenn das Netzteil ohne die Remote-Sense -Leitungen betrieben wird oder der Jumper J2 für

der Ausgangsspannung. Zudem kann der Überspannungsschutz OVP auslösen und das

Netzteil ab. Um den Betrieb wieder aufzunehmen,

verbinden das Lastkabel und schalten das Netzteil

lokales Sensing offen ist, arbeitet das Netzteil weiter,

allerdings mit einer verminderten Regelgenauigkeit

und entweder das negative oder das positive

Use remote sense where the load regulation at the load end is critical. In remote sense, the power supply will compensate for voltage drop on the load wires. Refer to the power supply specifications for the maximum voltage drop on load wires. The voltage drop is subtracted from the total voltage available at the output. Follow the instructions below to configure the power supply for remote sensing:

- 1. Ensure that the AC On/Off is in the Off position.
- 2. Remove the local sense jumpers from J2.
- 3. Connect the negative sense lead to terminal J2-5 (-S) and the positive sense lead to terminal J2-1(+S) of the J2 mating connector. Ensure that the J2 mating connector is plugged securely into the rear panel sense connector, J2.

Hinweise:

wieder ein.

Netzteil abschalten.

4. Turn On the power supply.

Notes:

- 1.If the power supply is operating in remote sense and either the positive or negative load wire is not connected, an internal protection circuit will activate and shut down the power supply. To resume operation, turn the AC On/Off to the Off position, connect the open load wire, and turn On the power supply.
- 2.If the power supply is operated without the remote sense lines or local sense jumpers, it will continue to work, but the output voltage regulation will be degraded. Also, the OVP circuit may activate and shut down the power supply.

3.10.4 J2 sense connector technical information

- J2 connector type: MC 1.5/5-G-3.81, Phoenix.
- Plug type: MC 1.5/5-ST-3.81, Phoenix.
- Wire AWG; 28 up to 16.
- Stripping length: 7mm.
- Tightening torque:1.95-2.21Lb-Inch. (0.22-0.25Nm)

3.11 REPACKAGING FOR SHIPMENT

To ensure safe transportation of the instrument, contact the Lambda sales or service facility near you for Return Authorization and shipping information. Please attach a tag to the power supply describing the problem and specifying the owner, model number and serial number of the power supply. Refer to Warranty Information for further instructions.

CHAPTER 4 FRONT AND REAR PANEL CONTROLS AND CONNECTORS

4.1 INTRODUCTION

The Genesys[™] Power Supply series has a full set of controls, indicators and connectors that allow the user to easily setup and operate the unit. Before starting to operate the unit, please read the following sections for explanation of the functions of the controls and connectors terminals.

- Section 4.2: Front panel controls and indicators.
- Section 4.3: Rear panel controls and connectors.

4.2 FRONT PANEL CONTROLS AND INDICATORS

See Fig.4-1 to review the controls, indicators and meters located on the power supply front panel. Refer to Table 4-1 for explanations about the front panel controls, indicators and meters functions.

Fig.4-1: Front panel controls and indicators

Table 4-1:	Front Pa	anel	controls	and	indicators
Table 4-1:	Front Pa	anei	controis	and	indicators

Number	Control/Indicator	Description	Section
1	VOLTAGE control	High resolution rotary encoder for adjusting the Output Voltage. Also adjusts the OVP/UVL levels and selects the Address.	5.2.1 5.3.1 5.4.1 7.2.2
2	VOLTAGE indicator	Green LED , lights for Constant-Voltage mode operation.	
3	VOLTAGE display	4 digit, 7-segment LED display. Normally displays the output voltage. When the PREV button is pressed, the display indicates the programmed setting of the output voltage. When the OVP/UVL button is pressed, the Voltage display indicates the OVP/UVL setting.	

Table 4-1	Front Panel	controls and	indicators
	i iont i anoi		maioators

Number	Control/Indicator	Description	Section
4	CURRENT display	4 digit, 7-segment LED display. Normally displays the output current. When the PREV button is pressed, the display indicates the programmed setting of output current.	
5	CURRENT indicator	Green LED, lights for Constant-Current mode operation.	
6	CURRENT control	High resolution rotary encoder for adjusting the Output Current. Also selects the Baud-Rate of the communication port.	5.2.2 7.2.4
7	OUT button	Main function: Output ON/OFF control. Press OUT to set the output On or Off. Press to reset and turn On the output after OVP or FOLD alarm events have occurred. Auxiliary function: Selects between "Safe-Start" and "Auto-Restart" modes. Press and hold OUT button to toggle between "Safe-Start" and "Auto-Restart".The VOLT display will cycle between "SAF" and "AU7". Releasing the OUT button while one of the modes is displayed, selects that mode.	5.6 5.11
8	OUT indicator	Green LED, lights when the DC output is enabled.	
9	REM/LOC button	Main function: Go to local. Press REM/LOC to put the unit into Local (REM/LOC button is disabled at Local Lockout mode). Auxiliary function: Address and Baud Rate setting. Press and hold REM/LOC for 3sec. to set the Address with the VOLTAGE encoder and the Baud Rate with the CURRENT encoder.	7.2.5 7.2.2 7.2.4
10	REM/LOC indicator	Green LED, lights when the unit is in Remote mode.	
11	FOLD button	 Foldback protection control. Press FOLD to set Foldback protection to On. To release Foldback alarm event, press OUT to enable the output and re-arm the protection. Press FOLD again to cancel the Foldback protection. 	5.5
12	FOLD indicator	Green LED, lights when Foldback protection is On.	
13	OVP/UVL button	Over Voltage Protection and Under Voltage limit setting. - Press once to set OVP using VOLTAGE encoder (the current display shows "OUP") - Press again to set the UVL using VOLTAGE encoder (the current display shows "UUL").	5.3 5.4
14	PREV/ â button	Main function: Press PREV to display the output voltage and current limit setting. For 5 sec. the display will show the setting and then it will return to show the actual output voltage and current. Auxiliary function: Front Panel Lock. Press and hold PREV button to toggle between "Locked front panel" and "Unlocked front panel". The display will cycle between "LFP" and "UFP". Releasing the PREV button while one of the modes is displayed, selects that mode.	5.17

Number	Control/Indicator	Description	Section
15	PREV indicator	Green LED, lights when PREV button is pressed.	
16	FINE button	Voltage and Current Fine/Coarse adjustment control. Operates as a toggle switch. In Fine mode, the VOLTAGE and CURRENT encoders operate with high resolution and in Coarse mode with lower resolution (approx. 6 turns). Auxiliary function : Advanced Parallel Operation Mode setting.	5.15.2
17	FINE indicator	Green LED, lights when the unit is in Fine mode.	
18	ALARM indicator	Red LED, blinks in case of fault detection. OVP, OTP Foldback, Enable and AC fail detection will cause the ALARM LED to blink.	
19	AC Power switch	AC On/Off control.	

4.3 REAR PANEL

See Fig.4-2 to review the connections and controls located on the power supply rear panel. Refer to Table 4-2 for explanations about the rear panel connections and controls.

Fig.4-2: Rear panel connections and controls

Number	Item	Description	Section
1	AC input connector	Header with a screw plug connector (Phoenix Contact PC6-16/4-GF-10,16)	3.7
2	DC output	Bus-bars for 8V to 100V models. Wire clamp connector for 150V to 600V models (shown).	3.9.6
3	Remote-In connector	RJ-45 type connector, use for connecting power supplies to RS232 or RS485 port of computer for remote control purposes. When using several power supplies in a power system, the first unit Remote-In is connected to the computer and the remaining units are chained, Remote-In to Remote-Out.	7.3 7.4

Number	Item	Description	Section
4	Remote Out connector	RJ-45 type connector, used for chaining power supplies to form a serial communication bus.	7.3 7.4
5	Programming and Monitoring connector	Connector for remote analog interface. Includes output voltage and current limit programming and monitoring signals, Shut-off control (electrical signal), Enable/Disable control (dry-contact), power supply ok (PS_OK) signal and operation mode (CV/CC) signal.	4.5
6	SW1 Setup switch	Nine position DIP switch for selecting remote programming and monitoring modes for Output Voltage, Current Limit and other control functions.	4.4 4.4.1 4.4.2
7	Remote sense connector	Connector for making remote sensing connections to the load for regulation of the load voltage and compensation of load wire drop.	3.8.2 3.10.2 3.10.3
8	Blank Sub-plate	Blank sub-plate for standard units. Isolated Remote Analog programming connector for units equipped with Isolated Analog control option (shown). IEEE connector for units equipped with IEEE programming option.	
9	IEEE switch	Two position DIP switch for selecting IEEE mode or RS232/485 mode when IEEE option is installed.	
10	Ground stud	M4 stud and hardware for chassis ground connection.	

Table 4-2: Rear panel connections and controls

4.4 REAR PANEL SW1 SETUP SWITCH

The SW1 Setup switch (see Fig.4-3) is a 9-position DIP switch that allows the user to choose the following:

- Internal or remote programming for Output Voltage and Current Limit.
 Remote voltage or resistive programming of Output Voltage and Output Current limit.
- Select range of remote voltage and resistive programming.
 Select range of Output Voltage and Output Current monitoring.
- Select the Remote Shut-Off control logic.
- Select between RS232 or RS485 communication interface.
- Enable or disable the rear panel Enable/Disable control (dry contact).

Fig.4-3: SW1 setup DIP switch

4.4.1 SW1 position functions

Refer to Table 4-3 for description of SW1 position functions. The factory default setting is Down for all positions.

Table 4-3	SW1	positions	functions
		positions	Tunicuons

Position	Function	Down (Factory default)	Up	
SW1-1	Output Voltage Remote analog programming	Output Voltage Programmed by Front Panel	Output Voltage Programmed by remote analog External Voltage or Extenal Resistor	
SW1-2	Output Current Limit Remote analog programming	Output Current Limit Programmed by Front Panel	Output Current Limit Programmed by remote analog External Voltage or External Resistor	
SW1-3	Programming range select (Remote voltage/resistive)	0-5V / (0-5Kohm)	0-10V / (0-10Kohm)	
SW1-4	Output Voltage and Current Monitoring range	0-5V	0-10V	
SW1-5	Shut Off logic select	On: High (2-15V) or Open Off: Low (0-0.6V) or Short	On: Low (0-0.6V) or Short Off: High (2-15V) or Open	
SW1-6	RS232/485 select	RS232 interface	RS485 interface	
SW1-7	Output Voltage Resistive programming	Output Voltage Programmed by External Voltage	Output Voltage Programmed by External Resistor	
SW1-8	Output Current Limit Resistive programming	Output Current Limit Programmed by External Voltage	Output Current Limit Programmed by External Resistor	
SW1-9	Enable/Disable control	Rear panel Enable/Disable control is not active	Rear panel Enable/Disable control is active	

4.4.2 Resetting the SW1 switch

Before making any changes to the SW1 switch setting, disable the power supply output by pressing the front panel OUT button. Ensure that the output voltage falls to zero and OUT LED is off, then use any small flat-bladed screwdriver to change the SW1 switch setting.

4.5 REAR PANEL J1 PROGRAMMING AND MONITORING CONNECTOR

The J1 Programming and Monitoring connector is a DB25 subminiature connector located on the power supply rear panel. Refer to Table 4-4 for description of the connector functions. The power supply default configuration is Local operation which does not require connections to J1. For remote operation using J1 signals use the plug provided with power supply or equivalent type. It is essential to use plastic body plug to conform with Safety Agency requirements. If a shield is required for J1 wires, connect the shield to a power supply chassis ground screw.

4.5.1 Making J1 connections

- J1 connector type: AMP, P/N: 5747461-3
- J1 plug description: AMP, P/N: 745211-7
- Wire dimension range: AWG26-22
- Extraction tool: AMP, 91232-1 or equivalent.
- Manual Pistol grip tool:

Handle: AMP, P/N: 58074-1 Head: AMP, P/N: 58063-2

Before making any connection, turn the AC On/Off switch to the Off position and wait until the front panel display has turned Off.

CAUTION

The programming return terminals (12, 22 and 23) are referenced to the -V potential of the power supply. Do not attempt to bias any of these terminals relative to the -V or any other potential. Use the Isolated Programming interface option to allow control from a programming source at a different potential relative to the power supply negative output.

VORSICHT

Die Return-Anschlüsse (Pins 12, 22 und 23) sind mit dem "-V" -Potential des Netzteils verbunden. Versuchen Sie nicht, zwischen einem dieser Anschlüsse und -V oder einem anderen Potential eine Spannung aufzubauen. Verwenden Sie die Option "Isolated Programming Interface" (Isolierte Programmierschnittstelle), wenn Sie das Netzteil von einem Gerät mit einem anderen Potential (gegenüber dem Minus-Ausgang des Netzteils) aus steuern wollen.

CAUTION

To prevent ground loops and to maintain the isolation of the power supply when programming from J1, use an ungrounded programming source. VORSICHT

Wenn Sie das Netzteil über J1 steuern, verwenden Sie eine potentialfreie Signalquelle, um Erdschleifen zu vermeiden und die Isolation des Netzteils zu erhalten.

There is a potential shock hazard at the output when using a power supply with rated output greater than 50V. Use wires with minimum insulation rating equivalent to the maximum output voltage of the power supply.

Bei Stromversorgungen mit einer Nennausgangsspannung von mehr als 50V besteht am Ausgang grundsätzlich die Gefahr eines elektrischen Schlags. Verwenden Sie Kabel, deren Isolation mindestens für die maximale Ausgangsspannung des Netzteils ausgelegt ist.

Table 4-4: J1 connector terminals and functions

J1 contact	Signal name	Function	Reference
J1-1	ENA_IN	Enable/Disable the power ssupply output by dry-contact (short/open) with ENA_OUT. Referenced internally to the Isolated Interface Common.	Sec. 5.8
J1-2 J1-3	IF_COM	Isolated Interface Common. Return for the SO, ENA control, PS_OK signal and communication interface RS232/485 IEEE optional.	Sec. 5.7, 5.10
J1-4~7	N/C	No Connection	
J1-8	LOCAL/ REMOTE	Input for selecting between Local or Remote analog programming of output voltage and output current.	Sec. 6.2
J1-9	VPGM	Input for remote analog voltage/resistance programming of the Output Voltage.	Sec. 6.1~6.4
J1-10	IPGM	Input for remote analog voltage/resistance programming of the Output Current.	Sec. 6.1~6.4
J1-11	VMON	Output for monitoring the power supply Output Voltage.	Sec. 6.6
J1-12	СОМ	Control Common. Return for VMON, IMON, CV/CC, LOC/REM. Referenced internally to the negative output potential.	
J1-13	CV/CC	Output for Constant-Voltage / Constant-Current mode indication.	Sec. 5.9
J1-14	ENA_OUT	Enable/Disable the power supply output by dry-contact (short/open) with ENA_IN.	Sec. 5.8
J1-15	SO	Input for Shut-Off control of the power supply output.	Sec. 5.7
J1-16	PS_OK	Output for indication of the power supply status.	Sec. 5.10
J1-17~20	N/C	No Connection.	
J1-21	LOC/REM SIGNAL	Output for indicating if the unit is in Local or Remote analog programming mode.	Sec. 6.3
J1-22	VPGM_RTN	Return for VPGM input. Connected internally to J1-12 terminal.	Sec. 6.1, 6.4, 6.5
J1-23	IPGM_RTN	Return for IPGM input. Referenced internally to the negative output potential.	Sec. 6.1, 6.4, 6.5
J1-24	IMON	Output for monitoring the power supply Output Current.	Sec. 6.6
J1-25	Р	Output for current balance in parallel operation. Connected internally to J1-24 terminal.	Sec. 5.15

CHAPTER 5 LOCAL OPERATION

5.1 INTRODUCTION

This Chapter describes the operating modes that are not involved in programming and monitoring the power supply via its serial communication port (RS232/RS485) or by remote analog signals. Ensure that the REM/LOC LED on the front panel is Off, indicating Local mode. If the REM/LOC LED is On, press the front panel REM/LOC button to change the operating mode to local.

- For information regarding remote analog programming refer to Chapter 6.
- For information regarding usage of the serial communication port refer to Chapter 7.

5.2 STANDARD OPERATION

The power supply has two basic operating modes: Constant Voltage Mode and Constant Current Mode. The mode in which the power supply operates at any given time depends on the output voltage setting, output current limit setting and the load resistance.

5.2.1 Constant Voltage Mode

- 1. In constant voltage mode, the power supply regulates the output voltage at the selected value, while the load current varies as required by the load.
- 2. While the power supply operates in constant voltage mode, the VOLTAGE LED on the front panel illuminates.
- 3. Adjustment of the output voltage can be made when the power supply output is enabled (Output On) or disabled (Output Off). When the output is enabled, simply rotate the VOLTAGE encoder knob to program the output voltage. When the output is disabled, press the PREV button and then rotate the VOLTAGE encoder knob. The VOLTAGE meter will show the programmed output voltage for 5 seconds after the adjustment has been completed. Then the VOLTAGE meter will display "OFF".
- 4. Adjustment resolution can be set to coarse or fine resolution. Press FINE button to select between the lower and higher resolution. The FINE LED turns On when the resolution is set to FINE.

NOTE

If after completing the adjustment, the display shows a different value than the setting, the power supply may be at current limit. Check the load condition and the power supply current limit setting.

NOTE

The maximum and minimum setting values of the output voltage are limited by the Over Voltage protection and Under Voltage limit setting. Refer to Sec.5.3 and 5.4 for more details.

5.2.2 Constant Current Operation

- 1. In constant current mode, the power supply regulates the output current at the selected value, while the voltage varies with the load requirement.
- 2. While the power supply is operating in constant current mode, the CURRENT LED on the front panel illuminates.
- 3. Adjustment of the output current limit can be made when the power supply output is enabled (Output On) or disabled (Output Off).
 - Disabled output (Off): Press PREV button and then rotate the Current encoder knob. The CURRENT meter will show the programmed current limit for 5 seconds after the adjustment has been completed. Then the VOLTAGE meter will display "OFF".

- Enabled output, power supply in Constant Voltage mode: Press the PREV button and then rotate the CURRENT encoder knob. The CURRENT meter will show the programmed current limit for 5 seconds after the adjustment has been completed, and then will return to show the actual load current.
- Enabled output, power supply in Constant Current mode: Rotate the CURRENT encoder knob to adjust the current limit.
- 4. Adjustment resolution can be set to Coarse or Fine adjustment. Press the FINE button to select between the Coarse and Fine resolution. The FINE LED turns On when the resolution is set to FINE.

5.2.3 Automatic Crossover

If the power supply operates in Constant Voltage mode, while the load current is increased to greater than the current limit setting, the power supply will automatically switch to Constant Current mode. If the load is decreased to less than the current limit setting, the power supply will automatically switch back to Constant Voltage mode.

5.3 OVER VOLTAGE PROTECTION (OVP)

The OVP circuit protects the load in the event of a remote or local programming error or a power supply failure. The protection circuit monitors the voltage at the power supply sense points and thus providing the protection level at the load. Upon detection of an Over Voltage condition, the power supply output will shut down.

5.3.1 Setting the OVP level

The OVP can be set when the power supply output is Enabled (On) or Disabled (Off). To set the OVP level, press the OVP/UVL button, so that the CURRENT meter shows "OUP".

The VOLTAGE meter shows the OVP setting level. Rotate the VOLTAGE encoder knob to adjust the OVP level. The display will show "OUP" and the setting value for 5 seconds after the adjustment has been completed and then will return to it's previous state.

The minimum setting level is approx. 105% of the set output voltage, or the value in Table 7-6, whichever is higher. The maximum setting level is shown in Table 5-1.

To preview the OVP setting, press OVP/UVL pushbutton so that the CURRENT display will show "OUP". At this time, the VOLTAGE display will show the OVP setting. After 5 seconds, the display will return to it's previous state.

Model	Max. OVP	Model	Max. OVP
8V 10V 16V 20V 30V 40V 60V	10.0V 12.0V 18.0V 24.0V 36.0V 44.0V 66.0V	80V 100V 150V 200V 300V 400V 500V 600V	88.0V 110.0V 165.0V 220.0V 330.0V 440.0V 550.0V 660.0V

Table 5-1: Maximum OVP setting levels

5.3.2 Activated OVP protection indications

When the OVP is activated the power supply output shuts down. The VOLTAGE display shows "OUP" and the ALARM LED blinks.

5.3.3 Resetting the OVP circuit

To reset the OVP circuit after it activates:

- 1. Reduce the power supply Output Voltage setting below the OVP set level.
- 2. Ensure that the load and the sense wiring is connected properly.
- 3. There are four methods to reset the OVP circuit.
 - 3.1 Press OUT button.
 - 3.2 Turn the power supply Off using the AC On/Off switch, wait until the front panel display turns Off, then turn the power supply On using the AC On/Off switch.
 - 3.3 Turn the power supply output Off and then On using the SO control (refer to sect.5.7). In this method the power supply should be set to Auto-Restart mode.
 - 3.4 Send OUT1 command via the RS232/485 communication port.

5.4 UNDER VOLTAGE LIMIT (UVL)

The UVL prevents adjustment of the output voltage below a certain limit. The combination of UVL and OVP functions, allow the user to create a protection window for sensitive load circuitry.

5.4.1 Setting the UVL level

Setting the UVL can be made when the power supply output is Enabled (On) or Disabled (Off). To set the UVL level, press the OVP/UVL button TWICE, so that the CURRENT meter shows "UUL". The VOLTAGE meter shows the UVL setting level. Rotate the VOLTAGE encoder knob to adjust the UVL level. The display will show "UUL" and the setting value for 5 seconds after the adjustment has been completed and then will return to it's previous state.

UVL setting values are limited at the maximum level to approximately 95% of the Output Voltage setting. Attempting to adjust the UVL above this limit will result in no response to the adjustment attempt. The minimum UVL setting is zero.

5.5 FOLDBACK PROTECTION

Foldback protection will shut down the power supply output if the load current exceeds the current limit setting level. This protection is useful when the load circuitry is sensitive to an over current condition.

5.5.1 Setting the Foldback protection

To arm the Foldback protection, the FOLD button should be pressed so that the FOLD LED illuminates. In this condition, transition from Constant Voltage to Constant Current mode will activate the Foldback protection. Activation of the Foldback protection disables the power supply output, causes the ALARM LED to blink and display "Fb" on the VOLTAGE meter.

5.5.2 Resetting activated Foldback protection

There are four methods to reset an activated Foldback protection.

- 1. Press the OUT button. The power supply output is enabled and the Output Voltage and current will return to their last setting. In this method, the Foldback protection remains armed, therefore if the load current is higher than the current limit setting, the Foldback protection will be activated again.
- 2. Press the FOLD button to cancel the Foldback protection. The power supply output will be disabled and the VOLTAGE display will show "OFF". Press the OUT button to enable the power supply output.
- 3. Turn the power supply output Off and then On using the SO control (refer to sect. 5.7). In this method the foldback protection remains armed, therefore if the load current is higher than the current limit setting the Foldback protection will be activated.
- 4. Turn the power supply Off using the AC On/Off switch, wait until the front panel display turns Off, then turn the unit back ON again. The power supply output is enabled and the Output Voltage and Current will return to their last setting. In this method, the Foldback protection remains armed, therefore if the load current is higher than the current limit setting, the Foldback protection will be activated again.

5.6 OUTPUT ON/OFF CONTROL

The Output On/Off enables or disables the power supply output. Use this function to make adjustments to either the power supply or the load without shutting off the AC power. The Output On/Off can be activated from the front panel using the OUT button or from the rear panel J1 connector. The OUT button can be pressed at any time to enable or disable the power supply output. When the output is disabled, the output voltage and current fall to zero and the VOLTAGE display shows "OFF".

5.7 OUTPUT SHUT-OFF (SO) CONTROL VIA REAR PANEL J1 CONNECTOR

Contacts 2,3 and 15 of J1 (Fig.4-2, Item 5) serve as Output Shut-Off (SO) terminals. The SO terminals accept a 2.5V to 15V signal or Open-Short contact to disable or enable the power supply output. The SO function will be activated only when a transition from On to Off is detected after applying AC power to unit. (Thus , in Auto-Restart mode, the output will be enabled after applying AC power, even if SO is in Off level.). After On to Off transition is detected, the SO will enable or disable the power supply output according to the signal level or the short/open applied to J1. This function is useful for connecting power supplies in a "Daisy-chain" (refer to section 5.16). The SO control can be used also to reset the OVP and Fold Protection. Refer to sect. 5.3 and 5.5 for details.

When the unit is shut-off by J1 signal, the VOLTAGE display will show "SO" to indicate the unit state. J1 contact 15 is the SO signal input and contacts 2 and 3, IF_COM, are the signal return (connected internally). Contacts 2,3 and 15 are optically isolated from the power supply output.

The SO control logic can be selected by the rear panel SW1 Setup switch. Refer to Table 5-2 for SW1 setting and SO control logic.

SW1-5 setting	SO signal level	Power supply	Display	
	J1-2(3), 15	output		
Down (default)	2-15V or Open	On	Voltage/Current	
	0-0.6V or Short	Off	"SO"	
Up	2-15V or Open	Off	"SO"	
	0-0.6V or Short	On	Voltage/Current	
Table 5-2: SO logic selection				

5.8 ENABLE/DISABLE CONTROL VIA REAR PANEL J1 CONNECTOR

Contacts 1 and 14 of J1 (Fig.4-2, Item 5) serve as Output Enable/Disable terminals by switch or relay. This function is enabled or disabled by the SW1 Setup switch position 9. Refer to Table 5-3 for Enable/Disable function and SW1 setting.

SW1-9 setting	Enable/Disable inputs	Power supply output	Display	ALARM LED
Down (Default)	Open or Short	On	Voltage/Current	Off
Lin	Open	Off	"ENA"	Blinking
Οp	Short	On	Voltage/Current	Off

Table 5-3: Enable/Disable function and SW1 setting

CAUTION
To prevent possible damage to the unit, do not connect
any of the Enable/Disable inputs to the positive or
negative output potential.

NOTE

Safe Start mode-If the Enable/Disable fault condition clears when units in safe start mode recovery is by pressing OUT button or by sending a 'OUT 1' serial command.

Auto Restart mode- The output will return back ON automatically when the Enable/Disable fault conditions clears.

VORSICHT

Um das Gerät vor möglichen Schäden zu schützen, verbinden Sie nie einen der Enable/Disable-Eingänge mit dem Plus- oder Minus-Ausgangspotential.

HINWEIS

Safe-Start-Modus - Im Safe-Start-Modus kehrt das Netzteil erst dann in den Normalbetrieb zurück, wenn der Enable/Disable-Eingang aktiviert wurde und zusätzlich die OUT - Taste betätigt wird oder das Gerät ein "OUT1

"-Kommando über die serielle Schnittstelle empfängt. **Auto-Restart-Modus** - In diesem Modus kehrt das Netzteil automatisch in den Normalbetrieb zurück, sobald der Enable/Disable-Eingang aktiviert wurde.

NOTE: After auto restart setting, you have to set output stage to "ON output" (OUT LED is lightening), to complete and release auto restart mode change.

5.9 CV/CC SIGNAL

CV/CC signal indicates the operating mode of the power supply, Constant Voltage or Constant Current. CV/CC signal is an open collector output with a 30V parallel zener, at J1-13, referenced to the COM potential at J1-12 (connected internally to the negative sense potential). When the power supply operates in Constant Voltage mode, CV/CC output is open. When the power supply operates in Constant Current mode, CV/CC signal output is low(0-0.6), with maximum 10mA sink current.

CAUTION

Do not connect CV/CC signal to a voltage source higher than 30VDC. Always connect CV/CC signal to the voltage source with a series resistor to limit the sink current to less than 10mA.

VORSICHT

Verbinden Sie den CV/CC-Ausgang nur mit einer Spannungsquelle bis maximal 30V DC. Verbinden Sie den Anschluss stets über einen Vorwiderstand mit der Spannungsquelle, oder begrenzen Sie den Strom auf andere Weise auf max. 10 mA.

5.10 PS_OK SIGNAL

PS_OK signal indicates fault condition in the power supply. PS_OK is a TTL signal output at J1-16, referenced to IF_COM at J1-2,3 (Isolated Interface Common)). When a fault condition occurs, PS_OK level is low, with maximum sink current of 1mA, when no fault condition occurs, PS_OK level is high with maximum source current of 2mA. The following faults will set the PS_OK to Fault state:

*OTP *OVP *Foldback *AC fail *Enable/Disable open (Power supply is disabled) *SO (Rear panel Shut-Off - Power supply is shut off)) *IEEE failure (with optional IEEE interface) *Output Off

5.11 SAFE START AND AUTO-RESTART MODES

When turning on the power supply AC On/Off, it can start to its last setting of Output Voltage and Current limit with the output enabled (Auto-restart) or start with the output disabled (Safe mode). Press and hold the OUT button to select between Safe start and Auto-restart modes. The VOLTAGE display will continuously cycle between "SAF" and "AU7" every 3 seconds. Releasing OUT pushbutton while one of the modes is displayed, selects that mode. The default setting at shipment is Safe mode.

5.11.1 Automatic start mode

In this mode, the power supply restores its last operation setting. Upon start-up, the output is enabled or disabled according to its last setting.

5.11.2 Safe start mode

In this mode, the power supply restores its last operation setting and sets the Output to Off state. At start-up, the output is disabled and the output voltage and current are zero. To enable the output and restore the last output voltage and current limit values, momentarily press OUT button.

5.12 OVER TEMPERATURE PROTECTION (OTP)

The OTP circuit shuts down the power supply before the internal components can exceed their safe internal operating temperature. When an OTP shutdown occurs, the display shows "O7P" and the ALARM LED blinks.

Resetting the OTP circuit can be automatic (non-latched) or manual (latched) depending on the Safe or Automatic restart mode.

- **1. Safe start mode:** In Safe start mode, the power supply stays off after the over temperature condition has been removed. The display continue to shows "O7P" and the ALARM LED continues to blink. To reset the OTP circuit, press OUT button (or send OUT ON command via the serial port).
- 2. Auto-restart mode: In Auto-restart mode, the power supply recovers to it's last setting automatically when the over temperature condition is removed.

5.13 LAST SETTING MEMORY

The power supply is equipped with Last Setting Memory, which stores power supply parameters at each AC turn-off sequence.

STORED PARAMETERS:

- 1. OUT On or Off
- 2. Output voltage setting (PV setting)
- 3. Output current limit (PC setting)
- 4. OVP setting
- 5. UVL setting
- 6. FOLD setting
- 7. Start-up mode (Safe or Auto-restart)
- 8. Remote/Local: If the last setting was Local Lockout (latched mode), the supply will return to Remote mode (non-latched).
- 9. Address setting
- 10. Baud rate
- 11. Locked /Unlocked front panel (LFP/UFP)

(Items 8, 9, 10 are related to Remote digital control operation and explained in chapter 7)

12. Master/Slave setting

5.14 SERIES OPERATION

Power supplies of the SAME MODEL can be connected in series to obtain increased output voltage. Split connection of the power supplies gives positive and negative output voltage.

CAUTION

Do not connect power supplies from different manufacturers in series or in parallel.

VORSICHT Schalten Sie nicht Stromversorgungen

verschiedener Hersteller in Serie oder parallel.

5.14.1 Series connection for increased output voltage

In this mode, two units are connected so that their outputs are summed. Set the current limit of each power supply to the maximum that the load can handle without damage. It is recommended that diodes be connected in parallel with each unit output to prevent reverse voltage during start up sequence or in case one of the units shuts down. Each diode should be rated to at least the power supply rated output voltage and output current. Refer to Fig.5-1 and 5-2 for series operation with local and remote sensing.

When power supplies are connected in series, and the load or one of the output terminals is grounded, no point may be at a greater potential of ± 60 VDC from ground for models up to 60VDC Rated Output and ± 600 VDC from ground for models >60VDC Rated Output. When using RS232/485 or IEEE, refer to the OUTPUT TERMINALS GROUNDING warning, section 3.9.11.

Wenn Stromversorgungen in Reihe geschaltet werden und die Last oder eine der Ausgangsklemmen geerdet ist, stellen Sie sicher, dass

bei Modellen mit bis zu 60V DC

Nennausgangsspannung kein Punkt ein Potential größer als ±60V gegenüber Erde ausweist,

bei Modellen mit mehr als 60V DC

Nennausgangsspannung kein Punkt ein Potential größer als ±600V gegenüber Erde ausweist.
Wenn Sie RS232/485- oder IEEE-Schnittstellen einsetzen, beachten Sie die Warnung "Erdung der Ausgangsklemmen" in Abschnitt 3.9.11.

Fig.5-1: Series connection, local sensing

Fig.5-2: Series connection, remote sensing

Remote programming in series operation for increased output voltage:

1.Programming by external voltage:

The analog programming circuits of this power supply are referenced to the negative output potential. Therefore, the circuits used to control each series connected unit must be separated and floated from each other.

2.Using the SO function and PS_OK signal: The Shut-Off and PS_OK circuits are referenced to the isolated interface common, IF_COM (J1-2,3). The IF_COM terminals of different units can be connected to obtain a single control circuit for the power supplies connected in series.

3. Programming by external resistor:

4. Programming via the Serial Communication port (RS232/RS485): Programming by external resistor is possible . Refer to section 6-5 for details.

The communication port is referenced to the IF_COM which is isolated from the power supply output potential. Therefore power supplies connected in series can be chained using the Remote-In and Remote-Out connectors. Refer to chapter 7 for details.

Remote-Out connectors. Refer to chapter 7 for details.

5.14.2 Series connection for positive and negative output voltage

In this mode, two units are configured as a positive and negative output. Set the current limit of each power supply to the maximum that the load can handle without damage. It is recommended that diodes be connected in parallel with each unit output to prevent reverse voltage during start-up or in case one of the units shuts down. Each diode should be rated to at least the power supply rated output voltage and output current. Refer to Fig.5-3 for this operating mode.

Fig.5-3: Series connection for positive/negative output voltages

Remote programming in series operation for positive and negative output voltage

1. Programming by external voltage:	The analog programming circuits of this power supply are referenced to the negative output potential. Therefore, the circuits used to control each series connected unit must be separated and floated from each other.
2. Using the SO function and PS_OK signal :	The Shut-Off and PS_OK circuits are referenced to the isolated interface common, IF_COM (J1-2,3). The IF_COM terminals of the units can be connected to obtain a single control circuit for the power supplies connected in series.
3. Programming by external resistor :	Programming by external resistor is possible. Refer to section 6.5 for details.
4. Programming via the Serial Communication port (RS232/RS485):	The communication port is referenced to the IF_COM which is isolated from the power supply output potential. Therefore power supplies connected in series can be chained using the Remote-In and

5.15 PARALLEL OPERATION

Up to four units of the same VOLTAGE and CURRENT rating can be connected in parallel to provide up to four times the output current capability. One of the units operates as a master and the remaining units are slaves. The slave units are analog programmed by the master unit.

In remote digital operation, only the master unit can be programmed by the computer while the slave units may be connected to the computer for voltage, current and status readback only.

There are two methods, basic and advanced, to configure multiple supplies for parallel operation. With both methods, Power Supplies, should be connected in a Daisy-Chain configuration.

f.Refer to Sec. 5.15.1 and to Sec. 5.15.2 for detailed explanation.

5.15.1 Basic parallel operation

In this method, setting the units as Master and Slaves is made by the rear panel J1 connections and the setup switch SW1. Each unit displays its own output current and voltage. To program the load current, the Master unit should be programmed to the total load current divided by the number of units in the system. Refer to the following procedure to configure multiple supplies for simple parallel operation.

1. Setting up the Master unit

Set the master unit output voltage to the desired voltage. Program the current limit to the desired load current limit divided by the number of parallel units. During operation, the master unit operates in CV mode, regulating the load voltage at the programmed output voltage. Connect the sensing circuit to local or remote sensing as shown in Fig.5-4 or Fig.5-5.

2. Setting up the slave units

- -1. The output voltage of the slave units should be programmed 2%~5% higher than the output voltage of the master unit to prevent interference with the master unit's control. The current limit of each unit should be programmed to the desired load current limit divided by the number of parallel units.
- -2.Set the rear panel setup switch SW1 position 2 to it's up position. -3.Set the rear panel setup switch SW1 position 3 in the same position as

SW1 position 4 of the master.

- -4.Connect short between J1-8 and J1-12 (refer to Table 4-4.)
- -5. Connect J1 terminal 10(IPGM) of the slave unit to J1 terminal 25(P) of the master unit.
- -6. Connect J1 terminal 23(IPGM RTN) of the slave unit to J1 terminal 12(COM) of the master unit.

During operation the slave units operate as a controlled current source following the master output current. It is recommended that the power system is designed so that each unit supplies up to 95% of its current rating because of the imbalance which may be caused by cabling and connections voltage drop.

3. Setting Over Voltage protection

The master unit OVP should be programmed to the desired OVP level. The OVP of the slave units should be programmed to a higher value than the master OVP. When the master unit shuts down, it programs the slave unit to zero output voltage. If a slave unit shuts down (when its OVP is set lower than the master output voltage), only that unit would shut down and the remaining slave units would supply all the load current.

4. Setting Foldback protection

Foldback protection if desired, may only be used with the master unit. When the master unit shuts down it programs the slave units to zero output voltage.

5. Connection to the load

In parallel operation, power supplies can be connected in local or remote sensing. Refer to Fig.5-4 and 5-5 for typical connections of parallel power supplies. The figures show connection of two units, however the same connection method applies up to 4 units.

5.15.2 Advanced parallel operation

In this method, multiple supplies can be configured to parallel operation as a single power supply. The total load current and output voltage are displayed by the Master unit and can be readback from the Master unit. The Slave units display only their operating status (On, Off or Fault condition).

Refer to the following procedure to configure multiple supplies for Advanced parallel operation. 1. Basic configuration

Repeat steps 1 to 5 in Sec. 5.15.1 (Basic parallel operation).

2. Setting the units as Master or Slave

a) Depress and hold the FINE button for 3 seconds. The Master/Slave configuration will be displayed on the Current Display. Rotate the CURRENT encoder to obtain the desired mode. Refer to Table 5-4 for the CURRENT display and modes of operation.

CURRENT Display	Operating Mode
H1	Single supply (default)
H2	Master supply with 1 Slave supply
H3	Master supply with 2 Slave supplies
H4	Master supply with 3 Slave supplies
S	Slave supply
T L L A A	

Table 5-4: Setting mode of operation

b) When the desired configuration is obtained, depress and release the FINE button or wait approx. 5 seconds.

3. Master and Slave units default operation

a) When a unit is programmed to Slave mode it enters the Remote mode with Local Lockout. In this mode, the front panel controls are disabled to prevent accidental setting change (refer to Sec. 7.2.7 for details).

b) The Slave units parameters will automatically set the following:

Output voltage to approximate. 102% of rated output voltage.

*Programmed Current to zero.

*UVL to zero volts *OVP to its maximum value

*AST On *OUT On *Foldback protection Off

c) The Master and Slave modes are stored in the power supply EEPROM when the AC power is Turned off. The system will return to the Master/Slave mode upon re-application of AC power.

4. CURRENT display accuracy

In the advanced parallel mode, the total current is programmed and reported by the Master. In this method, the CURRENT display accuracy is 2%+/-1 count. In cases that higher accuracy is required, it is recommended to use the basic parallel operation mode.

5. To release units from Slave mode

Slave units can be released using the following procedure:

- a) Depress FINE button for 3 seconds. The Master/Slave configuration will be displayed on the CURRENT display.
- b) Select H1 mode using the CURRENT encoder.
- c) Depress FINE button again or wait 5 seconds.d) Turn the AC power Off to store the new setting.
- e) After exiting from Slave operation the unit's parameters will be set to:
 - *Programmed Voltage to zero
 - *Programmed Current to zero
 - *UVL to zero volts *OVP to its maximum value

*AST OFF *OUT OFF *Foldback protection OFF *Locked Front Panel

NOTE

With local sensing it is important to minimize the wire length and resistance. Also the positive and negative wire resistance should be close as possible to each other to achieve current balance between power supplies.

HINWEIS

1. In parallel operation, the AC Supply should be applied to the Master Unit first and then to the Slave unit.

1. Bei Parallelbetrieb sollte zunächst das Master-Netzteil mit dem Netz verbunden werden, danach das Slave-Netzteil.

2. The above sequence is not required if the units are connected in daisy-chain.

2. Bei "Daisy-chain" -Betrieb ist diese Abfolge nicht erforderlich.

5.16 DAISY-CHAIN CONNECTION

It is possible to configure a multiple power supply system to shut down all the units when a fault condition occurs in one of the units. When the fault is removed, the system recovers according to its setting to Safe start mode or Automatic restart.

Setup switch SW1 position 5 should be set to its Down position to enable the Daisy-chain operation. Other SW1 positions can be set according to the application requirements.

If a fault occurs in one of the units its PS OK signal will be set to low level and the display will indicate the fault. The other units will shut off and their display will indicate "SO". When the fault condition is removed, the units will recover to their last setting according to their Safe start or Auto-restart setting. Fig.5-6 shows connection of three units, however the same connection method applies to systems with a larger number of units.

Fig.5-6: Daisy-chain connection

5.17 FRONT PANEL LOCKING

The front panel controls can be locked to protect from accidental power supply parameter change. Press and hold PREV button to toggle between "Locked front panel" and "Unlocked front panel". The display will cycle between "LFP" and "UFP". Releasing the PREV button while one of the modes is displayed, selects that mode.

5.17.1 Unlocked front panel

In this mode, the front panel controls are enable to program and monitor the power supply parameters.

5.17.2 Locked front panel

In this mode the following front panel controls are disabled:

- VOLTAGE and CURRENT encoders.
- FOLD button.
- OUT button.

The power supply will not respond to attempts to use these controls. The VOLT display will show "LFP" to indicate that the front panel is locked.

OVP/UVL button is active to preview the OVP and UVL setting.

Use PREV button to preview the output voltage and current setting or to unlock the front panel.

CHAPTER 6 REMOTE ANALOG PROGRAMMING

6.1 INTRODUCTION

The rear panel connector J1 allows the user to program the power supply output voltage and current limit with an analog device. J1 also provides monitoring signals for output voltage and output current. The programming range and monitoring signals range can be selected between 0-5V or 0-10V using the setup switch SW1. When the power supply is in Remote Analog programming, the serial communication port is active and can be used to read the power supply parameters.

CAUTION

COM (J1-12), VPGM_RTN (J1-22) and IPGM_RTN (J1-23) terminals of J1 are referenced to the -Vout potential (-V). Do not connect these terminals to any potential other than -Vout (-V), as it may damage the power supply.

VORSICHT

Am J1-Verbinder sind die Anschlüsse COM (J1-12), VPGM_RTN (J1-22) und IPGM_RTN (J1-23) sind mit dem -Vout-Potential (-V) verbunden. Verbinden Sie diese Anschlüsse nie mit einem anderen Potential als -Vout (-V), da dies das Netzteil beschädigen könnte.

6.2 LOCAL /REMOTE ANALOG CONTROL

Contact 8 of J1 (Fig. 4-2, item 5) accepts TTL signal or Open-Short contact (referenced to J1-12) to select between Local or Remote Analog programming of the output voltage and current limit. In Local mode, the output voltage and current limit can be programmed via the front panel VOLTAGE and CURRENT encoders or via the RS232/485 port. In Remote Analog mode, the output voltage and current limit can be programming resistors via J1 contacts 9 and 10 (refer to sec. 6.4 and 6.5). Refer to Table 6-1 for Local/Remote Analog control (J1-8) function and Setup switch SW1-1, 2 setting.

SW1-1,2 setting	J1-8 function	Output voltage/ Current setting
Down (default)	No effect	Local
Lin	"0" or Short	Remote Analog
Οp	"1" or Open	Local

Table 6-1: Local/Remote Analog control function

6.3 LOCAL/REMOTE ANALOG INDICATION

Contact 21 of J1 (Fig. 4-2, item 5) is an open collector output that indicates if the power supply is in Local mode or in Remote Analog mode. To use this output, connect a pull-up resistor to a voltage source of 30Vdc maximum. Choose the pull-up resistor so that the sink current will be less than 5mA when the output is in low state. Refer to Table 6-2 for J1-21 function.

J1-8	SW1-1	SW1-2	J1-21 signal
TTL "0" or short	Down	Down	Open
	Down	Up	0~0.6V
	Up	Down	0~0.6V
	Up	Up	0~0.6V
TTL "1" or open	Down or Up	Down or Up	Open

Table 6-2: Local/Remote Analog indication

6.4 REMOTE VOLTAGE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT LIMIT

CAUTION

To maintain the isolation of power supply and prevent ground loops, use an isolated programming source when operating the power supply via remote analog programming at J1 connector. VORSICHT

Wenn Sie das Netzteil mit analogen Spannungen über den J1- Verbinder ansteuern, verwenden Sie eine isolierte Signalquelle, um Erdschleifen zu vermeiden und die Isolation des Netzteils zu erhalten.

Perform the following procedure to set the power supply to Remote Voltage programming :

- 1. Turn the power supply AC On/Off switch to Off.
- 2. Set setup switch SW1-1 to its UP position for output voltage external programming and SW1-2 to its UP position for Output Current limit external programming.
- 3. Set SW1 position 3 to select programming voltage range according to Table 6-3.
- 4. Ensure that SW1 positions 7 and 8 are at their Down (default) position.
- 5. Connect a short between J1-8 and J1-12 (refer to Table 4-4).
- 6. Connect the programming source to the mating plug of J1 as shown in Fig.6-1. Observe correct polarity for the voltage source.
- 7. Set the programming sources to the desired levels and turn the power supply ON. Adjust the programming sources to change the power supply output.

Notes:

- SW1 positions 4,5,6 and 9 are not required for remote programming. Their setting can be determined according the application.
 The control circuits allow the user to set the output
- 2. The control circuits allow the user to set the output voltage and current limit up to 5% over the model-rated maximum value. The power supply will operate within the extended range, however it is not recommended to operate the power supply over its voltage and current rating and performance is not guaranteed.

Hinweise:

- 1.Die Schalter 4, 5, 6 und 9 von SW1 sind für die Fernprogrammierung nicht relevent. Ihre Einstellung kann der Applikation entsprechend erfolgen.
- 2. Die Bedienelemente des Netzteiles erlauben es dem Anwender, Ausgangsspannung und -strom auf bis zu 105% der Nennhöchstwertes einzustellen. Das Netzteil arbeitet in diesem erweiterten Bereich, jedoch sollte das Netzteil im normalen Einsatz nicht über die Nennwerte hinaus betrieben werden. Die Spezifikationen der Ausgangsparameter werden nur innerhalb des Nennbereiches für Ausgangsspannung und -strom garantiert.

SW1-3 setting	Output Voltage programming	Current limit programming
	VPGM (J1-9)	IPGM (J1-10)
UP	0-10V	0-10V
DOWN	0-5V	0-5V

Table 6-3: SW1-3 setting and programming range

J1 connector, rear panel view

Fig.6-1: Remote voltage programming connection

6.5 RESISTIVE PROGRAMMING OF OUTPUT VOLTAGE AND CURRENT LIMIT

For resistive programming, internal current sources, for output voltage and/or output current control. supply 1mA current through external programming resistors connected between J1-9 & 22 and J1-10 & 23. The voltage across the programming resistors is used as a programming voltage for the power supply. Resistance of 0~5Kohm or 0~10Kohm can be selected to program the output voltage and current limit from zero to full scale.

A variable resistor can control the output over its entire range, or a combination of variable resistor and series/parallel resistors can control the output over restricted portion of its range.

Perform the following procedure to set the power supply to Resistive programming:

- 1. Turn the AC On/Off switch to Off.
- 2. Set setup switch SW1-1 to its UP position for output voltage external programming and SW1-2 to its UP position for Output Current limit external programming.
- 3. Set SW1 position 3 to select programming resistor range according to Table 6-4.
- 4. Set SW1-7 to its UP position for output voltage resistive programming and SW1-8 to its UP position for Output Current limit resistive programming.
- 5. Connect a short between J1-8, J1-12 and J1-23 (refer to Table 4-4).
- 6. Connect the programming resistors to the mating plug of J1 as shown in Fig.6-2.
- 7. Set the programming resistors to the desired resistance and turn the power supply ON. Adjust the resistors to change the power supply output.

NOTES:

- 1. SW1 positions 4. 5. 6 and 9 are not required for remote programming. Their setting can be determined according to the application requirements.
- 2. The control circuits allow the user to set the output voltage and current limit up to 5% over the model-rated maximum value. The power supply will operate within the extended range. however it is not recommended to operate the power supply over its voltage and current rating and performance is not guaranteed.
- 3. To maintain the temperature stability specification of the power supply, the resistors used for programming should be stable and low noise resistors, with temperature coefficient of less than 50ppm.
- 4. When resistive programming is used, front panel and computer control (via serial communication port) of output voltage and current are disabled.

SW1-3 setting	Output Voltage programming	Current limit programming
	VPGM (J1-9)	IPGM (J1-10)
UP	0-10Kohm	0-10Kohm
DOWN	0-5Kohm	0-5Kohm

Table 6-4: SW1-3 setting and programming range

J1 connector, rear panel view
6.6 REMOTE MONITORING OF OUTPUT VOLTAGE AND CURRENT

The J1 connector, located on the rear panel provides analog signals for monitoring the output voltage and output current. Selection of the voltage range between 0-5V or 0-10V is made by setup switch SW1-4. The monitoring signals represent 0 to 100% of the power supply output voltage and output current. The monitor outputs have 500 ohm series output resistance. Ensure that the sensing circuit has an input resistance of greater than 500 Kohm or accuracy will be reduced.

Refer to Table 6-5 for required J1 connection, SW1-4 setting and monitoring voltage range.

Signal	Signal function	J1 connection		Range	SW1-4
name		Signal (+)	Return (-)		
VMON	Vout monitor	J1-11	11 10	0-5V	Down
IMON	lout monitor	J1-24	51-12		
VMON	Vout monitor	J1-11	14.40	0.101/	l la
IMON	lout monitor	J1-24	JI-12	0-100	υp

Table 6-5 Monitoring signals setting

Notes:

1.Radiated emissions, FCC requirements: FCC requirements for radiated emissions, use shielded cable for the analog control signals. In case of using unshielded cable, attach an EMI ferrite suppressor to the cable, as close as possible to the power supply. In Remote analog mode the output voltage and 2. Front panel encoders operation: current can't be set by the VOLTAGE and CURRENT encoders. 3. Front panel PREV button: Use PREV button to display the output voltage and current setting defined by the encoders or communication. 4. Communication: In Remote analog mode, power supply parameters can be programmed and readback via the communication port except output voltage and current settina.

CHAPTER 7 RS232 & RS485 REMOTE CONTROL

7.1 INTRODUCTION

This chapter describes the operation of the Genesys[™] 5000W power supplies via the serial communication port. Details of the initial set-up, operation via RS232 or RS485, the command set and the communication protocol are described in this chapter.

7.2 CONFIGURATION

7.2.1 Default setting

The power supply is shipped with the following setting:

-Address:	6	-Output:	Off
-Baud-rate:	9600	-Start up mode:	Safe start
-RS232/485:	RS232	-OVP:	Maximum
-Vout setting:	0	-UVL:	0
-lout setting:	Maximum	-Foldback:	Off
-Master/Slave	H1 (Master)	-Front panel:	Unlocked (UFP)

7.2.2 Address setting

The power supply address can be set to any address between 0 and 30. Follow the instructions described below to set the address.

- 1. If the unit is in Remote mode (front panel REM/LOC LED illuminates), press REM/LOC button to put the unit into Local mode.
- 2. Press and hold for approximately 3sec. the REM/LOC button. The VOLTAGE display will indicate the communication port address.
- 3. Using the VOLTAGE adjust encoder, select the address.

To preview the address at any time, press and hold the REM/LOC button for approx. 3sec. The VOLTAGE display will indicate the power supply address.

7.2.3 RS232 or RS485 selection

To select between RS232 or RS485 set the rear panel setup switch SW1-6 position to:

- Down for RS232
- Up for RS485

7.2.4 Baud rate setting

Five optional rates are possible: 1200, 2400, 4800, 9600 and 19200. To select the desired rate, the following steps should be taken:

- 1. If the unit is in Remote mode (front panel REM/LOC LED illuminates), press REM/LOC button to put the unit into Local mode.
- 2. Press and hold for approx. 3sec. the REM/LOC button. The CURRENT display will show the communication port Baud Rate.
- 3. Using the CURRENT adjust encoder, select the desired Baud Rate.

7.2.5 Setting the unit into Remote or Local mode

1. The unit will be put into Remote mode only via serial communication command. Commands that will put the unit into Remote mode are:

RST PV n OUT n PC n RMT n (for n values see Tables 7-3, 7-4, 7-5 and 7-6)

TDK·Lambda

2. There are two Remote modes:

- 1. Remote: In this mode, return to local can be made by the front panel REM/LOC or via serial port command RMT 0. Set the unit into Remote mode via serial port RMT 1 command.
- 2. Local Lockout: In this mode the unit can be returned to Remote mode via the serial port RMT 1 command or by turning off the AC power until the display turns off and then turn it to on again. In Local Lockout mode, the front panel REM/LOC button is not active. Set the unit into Local Lockout mode via serial port RMT 2 command.

7.2.6 RS232/485 port in Local mode

When the power supply is in local mode, it can receive queries or commands. If a query is received, the power supply will reply and remain in Local mode. If a command that affects the output is received, the power supply will perform the command and change to Remote mode.

Serial commands may be sent to set the status registers and read them while the unit is in Local mode. If the Enable registers are set (refer to section 7.8) the power supply will transmit SRQ's while in Local.

7.2.7 Front panel in Remote mode

Front panel control in Remote mode is disabled except for:

- 1. PREV: use to preview the Voltage and Current limit setting.
- 2. OVP/UVL: use to preview the OVP/UVL setting.
- 3. LOC/REM: use to set the unit into Local mode.

In Local Lockout mode, only PREV and OVP/UVL are active.

7.3 REAR PANEL RS232/485 CONNECTOR

The RS232/485 interface is accessible through the rear panel RS232/485 IN and RS485 OUT connectors. The connectors are 8 contact RJ-45. The IN and OUT connectors are used to connect power supplies in a RS232 or RS485 chain to a controller. Refer to Fig.7-1 for IN/OUT connectors pinout.

Fig.7-1: J3 rear panel IN/OUT connectors pinout

NOTE

Tx and Rx are used for RS232 communication. Txd +/- and Rxd +/- are used for RS485 communication. Refer to RS232 and RS485 cables description for connection details.

7.4 CONNECTING POWER SUPPLIES TO RS232 OR RS485 BUS

7.4.1 Single power supply

- 1. Select the desired interface RS232 or RS485 using rear panel setup switch SW1-6 (section 4-4).
 - RS232: Down position
 - -RS485: Up position
- 2. Connect rear panel IN connector to the controller RS232 or RS485 port using a suitable shielded cable. Refer to Figures 7-2, 7-3 and 7-4 for available RS232 and RS485 cables.

Fig.7-2: RS232 cable with DB25 connector (P/N: GEN/232-25)

Fig.7-3: RS232 cable with DB9 connector (P/N: GEN/232-9)

Fig.7-4: RS485 cable with DB9 connector (P/N: GEN/485-9)

TDK·Lambda

7.4.2 Multi power supply connection to RS232 or RS485 bus

Daisy-chain up to 31 units can be connected to RS232 or RS485 bus. The first unit connects to the controller via RS232 or RS485 and the other units are connected with RS485 bus, the user must set all slave supplies to a unique address. No two supplies may have the same address.

- 1. First unit connection: Refer to section 7.4.1 for connecting the first unit to the controller.
- 2. Other units connection: The other units on the bus are connected via their RS485 interface.
 - Refer to fig.7-5 for typical connection.
 - Set rear panel setup switch SW1-6 to it's UP position
 - Using the Linking cable supplied with each unit (refer to Fig.7-6), connect each unit OUT connector to the next unit IN connector.
 - * It is recommended when using ten or more power supplies in Daisy-chain system to connect a 120 ohm resistive termination at the last unit's RS485 OUT connector.
 - 120 Ω , 0.5W between TXD⁺ and TXD⁻
 - 120 Ω , 0.5W between RXD⁺ and RXD⁻

Fig7-5: Multi power supplies RS232/485 connection

Fig.7-6: Serial link cable with RJ-45 shielded connectors (P/N: GEN/RJ45)

7.5 COMMUNICATION INTERFACE PROTOCOL

NOTE The address (ADR n) command must return an "OK" response before any other commands are accepted.

7.5.1 Data format

Serial data format is 8 bit, one start bit and one stop bit. No parity bit.

7.5.2 Addressing

The Address is sent separately from the command. It is recommended to add a 100 msec software delay between query or sent command to next unit addressing. Refer to section 7.7.3 for details.

7.5.3 End of Message

The end of message is the Carriage Return character (ASCII 13). The power supply ignores the Line Feed (ASCII 10) character.

7.5.4 Command Repeat

The backslash character "\" will cause the last command to be repeated.

7.5.5 Checksum

The user may optionally add a checksum to the end of the command. The checksum is "\$" followed by two hex characters. If a command or a query has checksum, the response will also have one. There is no CR between the command string and the "\$" sign.

Example: STT?\$3A STAT?\$7B

7.5.6 Acknowledge

The power supply acknowledges received commands by returning "OK" message. If an error is detected, the power supply will return an error message. The rules of checksum apply also to the acknowledge.

7.5.7 Error message

If an error is detected in a command or query, the power supply will respond with an error message. Refer to section 7.6 for details.

7.5.8 Backspace

The backspace character (ASCII 8) clears the last character sent to the power supply.

7.6 ERROR MESSAGES

The power supply will return error messages for illegal commands and illegal programming parameters. Refer to Table 7-1 for programming error messages and Table 7-2 for commands error messages.

Table 7-1: Programming error messages

Error Code	Description
E01	Returned when program voltage (PV) is programmed above acceptable range.
	Example: PV value is above '105% of supply rating' or 'PV above 95% of OVP setting'.
E02	Returned when programming output voltage below UVL setting.
E04	Returned when OVP is programmed below acceptable range.
	Example:OVP value is less than '5% of supply voltage rating' plus 'voltage setting'.
E06	Returned when UVL value is programmed above the programmed output voltage.
E07	Returned when programming the Output to ON during a fault shut down.

Table 7-2: Commands error messages

Error Code	Description	
C01	Illegal command or query	
C02	Missing parameter	
C03	Illegal parameter	
C04	Checksum error	
C05	Setting out of range	

7.7 COMMAND SET DESCRIPTION

7.7.1 General guides

- 1. Any command or argument may be in capital letters or small letters.
- 2. In commands with an argument, a space must be between the command and the argument.
- 3. For any command that sets a numeric value, the value may be up to 12 characters long.
- 4. Carriage Return: If the CR character (ASCII 13) is received by itself, the power supply will respond with "OK" and CR.

7.7.2 Command set categories

The Genesys[™] 5000W series command set is divided into four categories as follows:

- 1. Initialization control
- 2. ID control
- 3. Output control
- 4. Status control

TDK·Lambda _____

7.7.3 Initialization control commands

#	Command	Description
1	ADR n	ADR is followed by address which can be 0 to 30 and is used to access the power supply .
2	CLS	Clear status. Sets FEVE and SEVE registers to zero (refer to section 7-8).
3	RST	Reset command. Brings the power supply to a safe and known state:Output voltage: zero,Remote: non-latched remote,Output current: zero,Auto-start: Off,Output: Off,OVP: maximum,FOLD: Off,UVL: zeroThe conditional registers (FLT and STAT) are updated, the other registers arenot changed.
4	RMT	Sets the power supply to local or remote mode: 1. RMT 0 or RMT LOC, sets the power supply into Local mode. 2. RMT 1 or RMT REM, sets the unit into remote mode. 3. RMT 2 or RMT LLO, sets the unit into Local Lockout mode (latched remote mode).
5	RMT?	Returns the Remote mode setting: 1. "LOC"- The unit is in Local mode. 2. "REM"- The unit is in Remote mode. 3. "LLO"- The unit is in Local Lockout (latched remote) mode.
6	MDAV?	Returns MD MODE OPTION Status. 1 indicates installed and 0 indicates not installed.
7	١	Repeat last command. If \ <cr> is received, the power supply will repeat the last command.</cr>

7.7.4 ID control commands

#	Command	Description	
1	IDN?	Returns the power supply model identification as an ASCII string: LAMBDA, GENX-Y	
2	REV?	Returns the software version as an ASCII string.	
3	SN?	Returns the unit serial number. Up to 12 characters.	
4	DATE?	Returns date of last test. Date format: yyyy/mm/dd	

7.7.5 Output control commands

#	Command	Description
1	PV n	Sets the output voltage value in Volts. The range of voltage value is described in Table7-3. The maximum number of characters is 12. See the following examples for PV n format: PV 12, PV 012, PV 12.0, PV 012.00, etc
2	PV?	Reads the output voltage setting. Returns the string "n" where "n" is the exact string sent in the PV n command. When in Local mode, returns the PREVIEW (front panel) settings in a 5 digits string.
3	MV?	Reads the actual output voltage. Return 5 digits string. Example: 60V supply sends 01.150, 15.012, 50.000, etc
4	PC n (See Note 1)	Sets the output current value in Amperes. The range of current values is described in Table 7-4. The maximum number of characters is 12. See the following examples for PC n format: PC 10, PC 10.0, PC 010.00, etc
5	PC?	Reads the output current setting. Returns the string "n" where "n" is the exact string sent in the PC n command. When in Local mode, returns the PREVIEW (front panel) settings in a 5 digits string.

7.7.5 Output control commands-cont

#	Command	Description
6	MC? (See Note 2)	Reads the actual output current. Returns 5 digits string. Example: 200A supply sends 000.50, 110.12, 200.00, etc
7	DVC?	Display Voltage and Current data. Data will be returned as a string of ASCII characters. A comma will separate the different fields. The fields, in order, are: Measured Voltage, Programmed Voltage, Measured Current, Programmed Current, Over Voltage Set point and Under Voltage Set Point. Example: 5.9999, 6.0000, 010.02, 010.00, 7.500, 0.000
8	OUT n	Turns the output to ON or OFF. Recover from Safe-Start, OVP or FLD fault. OUT 1 (or OUT ON)-Turn On. OUT 0(or OUT OFF)-Turn Off
9	OUT?	Returns the output On/Off status string. ON- output on. OFF- output off.
10	FLD n	Sets the Foldback protection to ON or OFF. FLD 1 (or FOLD ON) - Arms the Foldback protection. FLD 0 (or FOLD OFF)- Cancels the Foldback protection. When the Foldback protection has been activated, OUT 1 command will release the protection and re-arm it, while FLD 0 will cancel the protection.
11	FLD?	Returns the Foldback protection status string: "ON"- Foldback is armed, "OFF"- Foldback is canceled.
12	FBD nn	Add (nn x 0.1) seconds to the Fold Back Delay. This delay is in addition to the standard delay. The range of nn is 0 to 255. The value is stored in eprom at AC power down and recovered at AC power up.
13	FBD?	Supply returns the value of the added Fold Back Delay.
14	FBDRST	Reset the added Fold Back Delay to zero.
15	OVP n	Sets the OVP level. The OVP setting range is given in Table 7-5. The number of characters after OVP is up to 12. The minimum setting level is approx. 105% of the set output voltage, or the value in Table 7-6, whichever is higher. The maximum setting level is shown in Table 5-1. Attempting to program the OVP below this level will result in execution error response ("E04"). The OVP setting stays unchanged.
16	OVP?	Returns the setting "n" where "n" is the exact string in the user's "OVP n". When in Local mode, returns the last setting from the front panel in a 4 digit string.
17	OVM	Sets OVP level to the maximum level. Refer to Table 7-5.
18	UVL n	Sets Under Voltage Limit. Value of "n" may be equal to PV setting, but returns "E06" if higher. Refer to Table 7-6 for UVL programming range.
19	UVL?	Returns the setting "n" where "n" is the exact string in the user's "UVL n". When in Local mode, returns the last setting from the front panel in a 4 digit string.
20	AST n	Sets the auto-restart mode to ON or OFF. AST 1 (or AST ON)- Auto restart on. AST 0 (or AST OFF)- Auto restart off.
21	AST?	Returns the string auto-restart mode status. "ON"- Auto restart is on. "OFF"- Auto restart is off.
22	SAV	Saves present settings. The settings are the same as power-down last settings. These settings are erased when the supply power is switched off and the new "last settings" are saved.
23	RCL	Recalls last settings. Settings are from the last power-down or from the last "SAV" command.
24	MODE?	Returns the power supply operation mode. When the power supply is On (OUT 1) it will return "CV" or "CC". When the power supply is OFF (OUT 0) it will return "OFF".
25	MS?	Returns the Master/Slave setting. Master: n = 1, 2, 3, or 4 Slave: n = 0

TDK·Lambda —

NOTES:

- 1. In Advanced parallel mode (refer to Sec. 5.15.2), "n" is the total system current.
- 2. In Advanced parallel mode, "MC?" returns the Master unit current multiplied by the number of slave units+1.

7.7.6 Global output commands

1. General

All supplies, even if not the currently addressed supply, receiving a global command will execute the command. No response to the PC issuing the command will be returned to the PC. The PC issuing the command will be responsible to delay and any other communications until the command is execute. 200 Ms minimum is the suggested delay.

If the command contains an error, out of range values for example, no error report will be sent to the issuing PC.

1.	GRST	Reset. Brings the Power Supply to a safe and known state: Output voltage: 0V, output current: 0A, OUT: Off, Remote: RMT 1' AST: Off OVP:Max, UVL:0. The conditional register (FLT and STAT) are updated. Other registers are not changed. Non-Latching faults (FB, OVP, SO) are cleared, OUT fault stays.
2.	GPV n	Sets the output voltage value in volts. The range of voltage values is shown in Table 7-3. 'n' may be up to 12 char plus dec. pt
3.	GPC n	Program the output current value in amperes. The range of current values is shown in Table 7-4. 'n' may be up to 12 char plus dec. pt
4.	GOUT	Turns the output to ON or OFF: "GOUT 1/ON" = turn on "GOUT 0/OFF"= turn off, clears CV and CC bits in the Status Condition (STAT) OUT ON will respond with "E07' if the output cannot be turned on because of a latching fault (OTP< AC, ENA, SO) shutdown.
5.	GSAV	Save present settings. Same settings as power-down last settings listed in Error! Reference source not found. Except the address and Baud rate are not saved Saves to the RAM. These settings are erased when the supply power is switched off and the new 'last settings' are saved.
6.	GRCL	Recall last settings. Settings are from last power-down or from last 'SAV' or 'GSAV' command. Address and Baud rate are not recalled so communication is not interruped.

Table 7-3: Voltage programming range

Model	Minimum	Maximum
Rated Output Voltage (V)	(V)	(V)
8	0.000	8.000
10	00.000	10.000
16	00.000	16.000
20	00.000	20.000
30	00.000	30.000
40	00.000	40.000
60	00.000	60.000
80	00.00	80.00
100	00.00	100.00
150	00.00	150.00
200	00.00	200.00
300	00.00	300.00
400	00.00	400.00
500	00.00	500.00
600	00.00	600.00

NOTE:

The power supply can accept values higher by 5% than the table values, however it is not recommended to program the power supply over the rated values.

Model	Minimum (A)	Maximum (A)
GEN8-600	000.00	600.00
GEN10-500	000.00	500.00
GEN16-310	000.00	310.00
GEN20-250	00.00	250.00
GEN30-170	00.00	170.00
GEN40-125	00.00	125.00
GEN60-85	00.000	85.000
GEN80-65	00.000	65.000
GEN100-50	00.000	50.000
GEN150-34	00.000	34.000
GEN200-25	0.000	25.000
GEN300-17	0.000	17.000
GEN400-13	0.000	13.000
GEN500-10	0.000	10.000
GEN600-8.5	0.000	8.500

Table 7-4: Current programming range

NOTE:

Table 7-5: OVP programming range

Model	Minimum	Maximum	
Rated Output Voltage (V)	(V)	(V)	
8	0.5	10.0]
10	0.5	12.0	
16	1.0	19.0	
20	1.0	24.0	
30	2.0	36.0	
40	2.0.	44.0	
60	5.0	66.0	
80	5.0	88.0	
100	5.0	110	
150	5.0	165	
200	5.0	220	
300	5.0	330	
400	5.0	440	
500	5.0	550	
600	5.0	660	

7.7.7 Status control commands

Refer to section 7-8 for definition of the registers.

#	Command	Description		
1	STT?	Reads the complete power supply status. Returns ASCII characters representing the following data, separated by commas:		
		MV <actual (measured)="" voltage="">PC<programmed (set)="" current="">PV<programmed (set)="" voltage="">SR<status 2-digit="" hex="" register,="">MC<actual (measured)="" current="">FR<fault 2-digit="" hex="" register,="">Example response: MV(45.201),PV(45),MC(4.3257),PC(10),SR(30),FR(00)</fault></actual></status></programmed></programmed></actual>		
2	FLT?	Reads Fault Conditional Register, Return 2-digit hex.		
3	FENA	Set Fault Enable Register using 2-digit hex.		
4	FENA?	Reads Fault Enable Register. Returns 2-digit hex.		
5	FEVE?	Reads Fault Event Register. Returns 2-digit hex. Clears bits of Fault Event Register.		
6	STAT?	Reads Status Conditional Register. Returns 2-digit hex.		
7	SENA	Sets Status Enable Register using 2-digit hex.		
8	SENA?	Reads Status Enable Register. Returns 2-digit hex.		
9	SEVE?	Reads Status Event register. Returns 2-digit hex. Clears bits of Status Event register.		

Table 7-6: UVL programming range

The power supply can accept values higher by 5% than the table values, however it is not recommended to

program the power supply over the rated values.

Model	Minimum	Maximum
Rated Output Voltage (V)	(V)	(V)
8	0	7.60
10	0	9.50
16	0	15.2
20	0	19.0
30	0	28.5
40	0	38.0
60	0	57.0
80	0	76.0
100	0	95.0
150	0	142
200	0	190
300	0	285
400	0	380
500	0	475
600	0	570

7.8 STATUS, ERROR AND SRQ REGISTERS

7.8.1 General

This section describes the various status error and SRQ registers structure. The registers can be read or set via the RS232/485 commands. When using the IEEE option, refer to the user manual for Genesys[™] Power Supply IEEE Programming interface. Refer to Fig.7-7 for the Status and Error Registers Diagram.

Serial

TXD

OR

Command Error ("Cnn"). One response for every command or query received. Execution Error ("Enn") -Response OR messages Query Response ("message") -Command Response ("OK") -**Status Registers** Condition Enable Event I SB <u>0</u>→ <u>CV</u> **Constant Voltage** cv 1 -Constant Current CC SRQ = "!nn", CC ²→NFLT No Fault ---nn = address NFLT 3 -Fault FLT FLT SRQ OR ⁴→ AST Auto Start 0 Messages 0 ⁵→ FDE 0 Fold Enabled 0 One SRQ when SEVE goes 6 Spare 0 0 Address Changed 0 from all zeroes to any bit set. MSB 7→ LCL Local Mode LCL Setting more SEVE bits does "SENA xx" "SEVE?" not cause more SRQs. "STAT?" "SENA?"

Fig.7-7: Status and Error Registers Diagram

7.8.2 Conditional registers

The fault Condition Register and the Status Condition Register are read only registers that the user may read to see the condition of the supply. Refer to table 7-8 for description of the Fault Condition Register bits and Table 7-9 for the Status Condition register bits.

7.8.2 Conditional registers

Table 7-7: Fault Condition Register

BIT	Fault name	Fault symbol	Bit Set condition	Bit Reset condition
0 (LSB)	Spare bit	SPARE	Fixed to zero	Fixed to zero
1	AC Fail	AC	AC fail has occurred.	The AC input returns to normal.
2	Over temperature	OTP	OTP shutdown has occurred.	The power supply cools down.
3	Foldback	FOLD	Foldback shutdown has occurred.	The supply output is turned On by front panel button or OUT 1 command.
4	Over voltage	OVP	OVP shutdown has occurred.	The supply output is turned On by front panel button or OUT 1 command.
5	Shut Off	SO	Rear panel J "Shut Off" condition has occurred.	Rear panel J1 "Shut Off" condition removed.
6	Output Off	OFF	Front panel OUT button pressed to Off.	The supply output is turned On by front panel button or OUT 1 command.
7(MSB)	Enable	ENA	Rear panel J1 Enable terminals(J1-1&J1-14) opened.	Rear panel J1 Enable terminals closed.

Table 7-8: Status Condition Register

BIT	Status name	Status symbol	Bit Set condition	Bit Reset condition
0 (LSB)	Constant Voltage	CV	Output is On and the supply in CV.	Output is ON and the supply is not in CV.
1	Constant Current	СС	Output is ON and the supply in CC.	Output is ON and the supply is not in CC.
2	No Fault	NFLT	The power supply is operating normally or fault reporting is not enabled. See "OUT n" command in Section 7.7.5.	One or more faults are active and fault reporting is enabled (using "FENA xx").
3	Fault active	FLT	One or more faults are enabled and occur.	Fault Event Register cleared (FEVE?).
4	Auto- Restart Enabled	AST	Supply is in Auto- Restart mode (from Front Panel or serial command).	Supply is in Safe-Start mode (from Front Panel or serial command).
5	Fold Enabled	FDE	Fold protection enabled (from Front Panel or serial command).	Fold protection disabled (from Front Panel or serial command).
6	Spare bit	SPARE	Fixed to zero.	Fixed to zero.
7 (MSB)	Local Mode	LCL	Supply in Local mode.	Supply in Remote mode or Local- Lockout mode.

7.8.3 Service Request: Enable and Event Registers The conditional Registers are continuously monitored. When a change is detected in a register bit which is enabled, the power supply will generate an SRQ message. The SRQ message is: "!nn" terminated by CR, where the nn is the power supply address. The SRQ will be generated either in Local or Remote mode.

TDK·Lambda _____

Refer to Tables 7-9 to 7-12 for details of the Enable and Event registers.

1.Fault Enable Register

The Fault Enable Register is set to the enable faults SRQs.

BIT	Enable bit name	Fault symbol	Bit Set condition	Bit reset condition
0 (LSB)	Spare bit	SPARE		
1	AC Fail	AC		
2	Over Temperature	OTP	User command:	User command: "FENA nn" where nn is hexadecimal (if
3	Foldback	FOLD	"FENA nn" where nn is hexadecimal	nn="00", no fault SRQs will be generated).
4	Over Voltage	OVP		
5	Shut Off	SO		
6	Output Off	OFF		
7(MSB)	Enable	ENA		

2.Fault Event Register

The Fault Event will set a bit if a condition occurs and it is enabled. The register is cleared when FEVE?, CLS or RST commands are received.

Table 7-10: Fault Event Register

BIT	Event bit name	Fault symbol	Bit Set condition	Bit reset condition
0 (LSB)	Spare bit	SPARE		
1	AC Fail	AC	Fault condition occurs and it is	Entire Event Register is cleared when user sends
2	Over Temperature	OTP	enabled. The fault can set	"FEVE?" command to read
3	Foldback	FOLD	a bit, but when	"CLS" and power-up also
4	Over Voltage	OVP	the bit remains	Register. (The Fault Event
5	Shut Off	SO	set.	Register is not cleared by RST)
6	Output Off	OFF		
7(MSB)	Enable	ENA		

3.Status Enable register

The Status Enable Register is set by the user to enable SRQs from changes in power supply status.

BIT	Status name	Status symbol	Bit Set condition	Bit reset condition	
0 (LSB)	Constant Voltage	CV		User command: "SENA nn"	
1	Constant Current	СС	User command: "SENA nn" is	is received, where nn is hexadecimal bits.	
2	No Fault	NFLT	received, where nn is	If "nn"=00, no SRQ is sent when there is a change in	
3	Fault active	FLT	hexadecimal bits.	Status Condition Register.	
4	Auto-Restart enabled	AST	Always zero	Always zero	
5	Fold enabled	FDE	Always zero	Always zero	
6	Spare	Spare	Always zero	Always zero	
7(MSB)	Local Mode	LCL	"SENA nn" command	"SENA nn" command	

Table 7-11: Status Enable Register

4.Status Event Register

The Status Event Register will set a bit if a change in the power supply status occurs and it is enabled. The register is cleared when the "SEVE?" or "CLS" commands are received. A change in this register will generate SRQ.

Table 7-12: Status	Event Register
--------------------	----------------

BIT	Status name	Status symbol	Bit Set condition	Bit reset condition
0 (LSB)	Constant Voltage	CV	Changes in status	
1	Constant Current	СС	enabled.	
2	No Fault	NFLT	set a bit, but when	Entire Event Register is
3	Fault active	FLT	the bit remains set.	cleared when user sends "SEVE?" command to read
4	Not used	0	Always zero	the register.
5	Not used	0	Always zero	clear the Status Event
6	Not used	0	Always zero	Register is not cleared by
7(MSB)	Local Mode	LCL	Unit is set to Local by pressing front panel REM/LOC button.	KSI)

TDK·Lambda ——

7.9 SERIAL COMMUNICATION TEST SET-UP

Use the following instructions as basic set-up to test the serial communication operation.

- **1.Equipment:** PC with Windows Hyper Terminal, private edition, software installed, Genesys[™] power supply, RS232 cable.
- **2.PC set-up:** 2.1 Open Hyper Terminal.....New Connection.
 - 2.2 Enter a name
 - 2.3 Connect to.....Direct to Com1 or Com 2
 - 2.4 Configure port properties:

Bits per second	9600
Data bits	8
Parity	None
Stop bits	1
Flow control	None

- 2.5 Open Properties in the program File.....Properties
- 2.6 Setting: ASCII Set Up

Select Echo characters locally, select send line ends with line feed. On some PC systems, pressing the number keypad "Enter" will distort displayed messages. Use the alphabetic "Enter" instead.

3. Power supply set-up:

- 3.1 Connect the power supply to the PC using the RS232 cable.
- 3.2 Set via the front panel: Baud Rate: 9600, Address: 06.
- 3.3 Set via the rear panel: RS232/485 to RS232 (refer to section: 4-4).

4.Communication Test:

- 4.1 Model identification: PC:write: ADR 06 Power supply response: "OK"
- 4.2 Command test:

PC write: OUT 1 Power supply response: "OK" PC write: PV n Power supply response: "OK" PC write: PC n (for n values see Tables 7-3, 7-4 and 7-5) Power supply response: "OK"

The power supply should turn on and the display will indicate the output voltage and the actual output current.

CHAPTER 8 ISOLATED ANALOG PROGRAMMING OPTION 8.1 INTRODUCTION

Isolated Analog Programming is an internal option card for analog programming of the Genesys[™] power supply series. The option is factory installed and cannot be obtained with GPIB (IEEE) Interface. Output Voltage and Current Limit can be programmed and readback through optically isolated signals which are isolated from all other ground references in the power supply. There are two types of Isolated Analog programming cards:

0-5V/0-10V option (PN: IS510): Using 0-5V or 0-10V signals for programming and readback.
 4-20mA option (PN: IS420): Using current signals for programming and readback.

8.2 SPECIFICATIONS

8.2.1 0-5V/0-10V option (PN: IS510)

Programming	Output voltage programming accuracy	%	+/-1
Inputs	Output current programming accuracy	%	+/-1
	Output voltage programming temperature coefficient	PPM/°C	+/-100
	Output current programming temperature coefficient	PPM/°C	+/-100
	Input impedance	Ohm	1M
	Absolute maximum voltage	Vdc	0-15
	Max. voltage between program inputs and supply outputs	Vdc	600
Monitoring	Output voltage monitoring accuracy	%	+/-1.5
Outputs	Output current monitoring accuracy	%	+/-1.5
	Output Impedance (see note)	Ohm	100
	Max. voltage between monitoring outputs and supply outputs	Vdc	600

NOTE:

Use 100Kohm minimum input impedance for the monitoring circuits to minimize the readback error.

8.2.2 4-20mA option (PN: IS420)

Programming	Output voltage programming accuracy	%	+/-1
Inputs	Output current programming accuracy	%	+/-1
	Output voltage programming temperature coefficient	PPM/°C	+/-200
	Output current programming temperature coefficient	PPM/°C	+/-200
	Input impedance	Ohm	50
	Absolute maximum input current	mA	0-30
	Max. voltage between program inputs and supply outputs	Vdc	600
Monitoring	Output voltage monitoring accuracy	%	+/-1.5
Outputs	Output current monitoring accuracy	%	+/-1.5
	Maximum load impedance	Ohm	500
	Max. voltage between monitoring outputs and supply outputs	Vdc	600

TDK·Lambda

8.3 ISOLATED PROGRAMMING & MONITORING CONNECTOR

Refer to Table 8-1 for detailed description of the rear panel Isolated Programming & Monitoring connector. To provide the lowest noise performance, it is recommended to use shielded-twisted pair wiring.

Refer to Fig.8-1 for description of the connector.

Isolated programming plug P/N: MC1.5/8-ST-3.81, Phoenix.

Fig.8-1: Isolated Programming & Monitoring connector

Table 8-1: Detailed description of Isolated programming & Monitoring connector

Terminal	Signal name	Function	Range 0-5/0-10V IS510 option	Range 4-20mA IS420 option
1	SHLD	Shield, connected internally to chassis of the supply.	Chassis	ground
2	+VPROG_ISO	Output voltage programming input	0-5/0-10V	4-20mA
3	+IPROG_ISO	Output current programming input	0-5/0-10V	4-20mA
4	GND	Ground for programming signals.	Ground	Ground
5	GND	Ground for programming signals.	Ground	Ground
6	+VMON_ISO	Output voltage monitoring output	0-5/0-10V	4-20mA
7	+IMON_ISO	Output current monitoring output	0-5/0-10V	4-20mA
8	SHLD	Shield, connected internally to chassis of the supply.	Chassi	s ground

CAUTION

When the Isolated Analog Option is installed, do not apply any signals to the non-isolated VPGM and IPGM (J1-9 and J1-10) pins. All other J1 features may be used normally. Refer to Section 4.5 for a description of J1 features.

Parallel Operation: Optional Isolated Analog IS510/ IS420 must be installed in both the Master and Slave unit.

VORSICHT

Wenn die optionale Ansteuerung mit isolierten Analogsignalen verwendet wird, legen Sie keinerlei Signale an die nicht isolierten Pins VPGM oder IPGM (J1-9 und J1-10) der Standardschnittstelle J1. Alle übrigen J1-Funktionen können normal verwendet werden. Siehe Abschnitt 4.5 für eine Beschreibung der J1-Funktionen. Parallelbetrieb: Wird optional isoliertes Analoges IS510/IS420 benötigt, muss sowohl in den Masterals auch in den Slave-Geräten diese vorgesehen werden.

8.4 SETUP AND OPERATING INSTRUCTIONS

CAUTION

To prevent damage to the unit, do not program the output voltage and current to higher then the power supply rating. VORSICHT

Um das Gerät vor Schäden zu schützen, programmieren Sie keine Spannungs- oder Stromwerte, die über den maximalen Nennwerten liegen.

8.4.1 Setting up the power supply for 0-5/0-10V Isolated Programming and Monitoring

- Perform the following procedure to configure the power supply:
- 1. Turn the power supply AC power switch to Off.
- 2. Connect a short between J1-8 and J1-12 (refer to Table 4-4).
- 3. Set Setup switch SW1-1 to its UP position for Output Voltage external programming and SW1-2 to its UP position for Output Current limit external programming.
- 4. Set SW1 position 3 to select the programming voltage range: Down=0-5V, Up=0-10V.
- 5. Set SW1 position 4 to select the monitoring range: Down=0-5V, Up=0-10V.
- 6. Ensure that SW1 positions 7 and 8 are in the their down position.
- 7. Connect the programming sources to the mating plug of the Isolated Programming connector. Observe for correct polarity of the voltage source.

NOTE J1-8 and J1-12 must be shorted together with a jumper.		HINWEIS J1-8 und J1-12 müssen über einen Jumper miteinander verbunden werden.
---	--	---

8. Set the programming sources to the desired levels and turn the power supply ON.

8.4.2 Setting up the power supply for 4-20mA Isolated Programming and Monitoring

Perform the following procedure to configure the power supply:

- 1. Turn the power supply AC power switch to Off.
- 2. Connect a short between J1-8 and J1-12 (refer to Table 4-4).
- 3.Set setup switch SW1-1 to its UP position for Output Voltage external programming and SW1-2 to its UP position for Output Current limit external programming.
- 4. Set SW1 position 3 to it's Up position.
- 5. Set SW1 position 4 to it's Up position.
- 6. Ensure that SW1 positions 7 and 8 are in their Down position.
- 7. Connect the programming source to the mating plug of the Isolated Programming connector. Observe for correct polarity of the voltage source.

HINWEIS
J1-8 und J1-12 müssen über einen Jumper miteinander
verbunden werden.

8. Set the programming sources to the desired levels and turn the power supply ON.

NOTE

SW1 position 3 and 4 must be in their Up position for operation with 4-20mA Isolated Programming and Monitoring.

HINWEIS

Für die isolierte Programmierung und Überwachung mittels 4-20mA-Signalen müssen die Schalter 3 und 4 von SW1 in der oberen Position stehen.

8.5 PARALLEL OPERATION WITH ISOLATED ANALOG OPTION

CAUTION

To prevent damage to the unit, do not program the output voltage and current to higher then the power supply rating

VORSICHT

Umdas Gerät vor Schäden zu schützen, programmieren Sie keine Spannungs-oder Stromwerte, die über den maximalen Nennwerten liegen.

Power supplies, should be connected in a daisy-chain configuration

8.5.1 setting up the Master unit

Setting up the power supply for 0-5/0-10V Isolated Programming and Monitoring.

Perform the following procedure to configure the power supply:

- 1. Turn the power supply AC power switch to Off.
- 2. Connect a short between J1-8 and J1-12 (refer to Table 4-4).
- 3. Set Setup switch SW1-1 to its UP position for Output Voltage external programming and SW1-2 to its UP position for Output Current limit external programming.
- 4. Set SW1 position 3 to select the programming voltage range: Down=0-5V, Up=0-10V.
- 5. Set SW1 position 4 to select the monitoring range: Down=0-5V, Up=0-10V.
- 6. Ensure that SW1 positions 7 and 8 are in the their down position.
- 7. Connect the programming sources to the mating plug of the Isolated Programming connector. Observe for correct polarity of the voltage source.

8.5.2 setting up the Slave unit

Setting up the power supply for 0-5/0-10V Isolated Programming and Monitoring.

Perform the following procedure to configure the power supply:

- 1. Turn the power supply AC power switch to Off.
- 2. Connect a short between J1-8 and J1-12 (refer to Table 4-4).
- 3. Set Setup switch SW1-1 to its DOWN position for Output Voltage programming by front panel and SW1-2 to its UP position for Output Current limit external programming.
- 4. Set SW1 position 3 to select the programming voltage range: Down=0-5V, Up=0-10V.
- 5. Set SW1 position 4 to select the monitoring range: Down=0-5V, Up=0-10V.
- 6. Ensure that SW1 positions 7 and 8 are in the their down position.
- 7. Connect pin 7 (IMON_ISO) of Isolated Analog connector in Master Unit To pin 3 (IPROG ISO) of Isolated Analog connector in Slave unit.
- 8. Connect pin 4 (GND) of Isolated Analog connector in Master Unit To pin 4 (GND) of Isolated Analog connector in Slave unit.

Daisy-chain connection:

- 9. Connect J1-2,3 of the Master unit to J1-2,3 of the Slave unit.
- 10. Connect J1-15 of the Master unit to J1-16 of the Slave unit.
- 11. Connect J1-16 of the Master unit to J1-15 of the Slave unit.
- 12. Set the programming sources to the desired levels and turn the Master and Slave units ON.

CHAPTER 9 MAINTENANCE

9.1 INTRODUCTION

This chapter provides information about maintenance, calibration and troubleshooting.

9.2 UNITS UNDER WARRANTY

Units requiring repair during the warranty period should be returned to a Lambda authorized service facility. Refer to the addresses listing on the back cover of this manual. Unauthorized repairs performed by other than the authorized service facilities may void the warranty.

9.3 PERIODIC MAINTENANCE

No routine maintenance of the power supply is required except for periodic cleaning. To clean, disconnect the unit from the AC supply and allow 30sec. for discharging internal voltage. The front panel and the metal surfaces should be cleaned using mild solution of detergent and water. The solution should be applied onto a soft cloth, and not directly to the surface of the unit. Do not use aromatic hydrocarbons or chlorinated solvents for cleaning. Use low pressure compressed air to blow dust from the unit.

9.4 ADJUSTMENTS AND CALIBRATION

No internal adjustment or calibration is required. There is NO REASON to open the power supply cover.

9.5 PARTS REPLACEMENT AND REPAIRS

As repairs are made only by the manufacturer or by authorized service facilities, no parts replacement information is provided in the manual. In case of failure, unusual or erratic operation of the unit, contact a Lambda sales or service facility nearest you. Please refer to the Lambda sales offices addresses listing on the back cover of this user manual.

9.6 TROUBLESHOOTING

If the power supply appears to operating improperly, use the troubleshooting guide to determine whether the power supply, load or external control circuit are the cause.

Configure the power supply for basic front panel operation and perform the tests of section 3.8 to determine if the problem is with the supply.

Table 9-1 provides the basic checks that can be performed to diagnose problems, and references to sections of this manual for further information.

SYMPTOM	CHECK	ACTION	REF.
No output. All displays and	Is the AC power cord defective?	Check continuity, replace if necessary.	3.7
indicators are blank.	Is the AC input voltage within range?	Check input AC voltage. Connect to appropriate voltage source.	3.6 3.7
Output is present momentarily but shuts off quickly. The display indicates "AC".	Does the AC source voltage sag when load is applied?	Check input AC voltage. Connect to appropriate voltage source.	3.6

Table 9-1: Troubleshooting guide

TDK·Lambda _____

SYMPTOM	CHECK	ACTION	REF.
Output is present momentarily but shuts off quickly. the display indicates "OUP".	Is the power supply configured to Remote sense?	Check if the positive or negative load wire is loose.	3.9.6 3.9.8
Output voltage will not adjust. Front panel CC LED is on.	Is the unit in constant current mode?	Check current limit setting and load current.	5.2.1 5.2.2
Output voltage will not adjust. Front panel CV LED is on.	Check if output voltage is adjusted above OVP setting or below UVL setting.	Set OVP or UVL so they will not limit the output.	5.3 5.4
Output current will not adjust. Front panel CV LED is on.	Is the unit in constant voltage mode?	Check current limit and voltage setting.	5.2
Large ripple present in output.	Is the power supply in remote sense? Is the voltage drop on the load wire high?	Check load and sense wires connection for noise and impedance effects. Minimize the drop on the load wires.	3.9.4 3.9.8
No output. Display indicates "OUP"	Over Voltage Protection circuit is tripped.	Turn off the AC power switch. Check load connections. If analog programming is used, check if the OVP is set lower than the output.	5.3
No output. Front panel ALARM LED is blinking.	Display indicates "ENA"	Check rear panel J1 ENABLE connection.	5.8
		Setup switch SW1 setting.	4.4
	Display indicates "SO"	Check rear panel J1 Output Shut-Off connection.	5.7
	Display indicates "O7P"	Check if air intake or exhaust are blocked. Check if the unit is installed adjacent to heat generating equipment.	5.12
	Display indicates "Fb"	Check Foldback setting and load current.	5.5
Poor Load regulation Front panel CV LED is on.	Are sensing wires connected properly?	Connect the sense wires according to User's manual instructions.	3.9.8
The front panel controls are nonfunctional.	Is the power supply in Local-Lockout mode?	Turn Off the AC power and wait until the display turns off. Turn on the AC power and press front panel REM/LOC button.	7.2.5

9.7 FUSE RATING

There are no user replaceable fuses in the power supply. Internal fuses are sized for fault protection and if a fuse was opened it would indicate that service is required. Fuse replacement should be made by qualified technical personnel. Refer to Table 9-2 for a listing of the fuses.

Table 9-2: Internal fuses

Fuse designation	3-Phase, 190-240Vac	3-Phase, 380-415Vac
INPUT FUSE	F301, F302, F303: 30A, 250VAC, Fast-Acting	F651,F652, F653: 15A, 600VAC, Fast-Acting
F401, F402	5A, 400VDC	, Normal-Blow

Kapitel 9 Wartung & Service

9.1 Einleitung

Dieses Kapitel liefert Informationen über Wartung und Fehlersuche.

9.2 Reparaturen während der Garantie

Sollte ein Gerät innerhalb der Garantiezeit ausfallen, so dürfen Reparaturen nur durch Lambda oder autorisierte Servicestellen durchgeführt werden. Die Adressen finden Sie am Ende dieses Handbuches. Eingriffe in die Geräte durch nicht autorisierte Stellen führen zum Verlust des Garantieanspruches.

9.3 Periodische Wartung

Die Geräte sind wartungsfrei. Wir empfehlen jedoch die regelmäßige Reinigung. Trennen Sie die Einheit vom Versorgungsnetz und warten Sie 30 Sekunden um sicherzugehen, dass sich interne Spannungen abgebaut haben. Die Frontabdeckung und die Metalloberflächen sollten mit einer milder Lösung von Reinigungsmittel und Wasser gesäubert werden. Die Lösung sollte auf ein weiches Tuch aufgetragen werden, und nicht direkt auf Oberfläche der Geräte. Benutzen Sie keine Reinigungsmittel die aromatische Kohlenwasserstoffe, Chlor Lösungsmittel enthalten. Benutzen Sie schwach komprimierte Pressluft, um das Gerät von Staub zu befreien.

9.4 Justagen und Kalibrierung

Interne Justage oder Kalibrierung ist nicht nötig. Es gibt keinen Grund, die Stromversorgung zu öffnen.

9.5 Bauteilewechsel und Reparaturen

Da Reparaturen nur durch den Hersteller oder autorisierte Servicestellen durchgeführt werden dürfen, enthält das Handbuch keine Schaltpläne. Im Falle eines defektes oder ungewöhnlichem Verhalten des Gerätes, setzen Sie sich bitte mit der nächstgelegenen Lambda Niederlassung in Verbindung. Die Adressen finden Sie am Ende dieses Handbuches.

9.6 Fehlersuche

Sollte die Stromversorgung nicht wie erwartet funktionieren, kann ihnen die nachfolgende Tabelle helfen, herauszufinden ob die Stromversorgung, die Last oder eine externe Steuerung die Ursache dafür ist.

Stellen Sie das Netzgerät so ein, dass es mit den Reglern und Tasten am Frontpanel bedient werden kann. Führen Sie dann die Tests aus Abschnitt 3.8 durch um festzustellen, ob das Problem durch das Netzgerät verursacht wird.

Tabelle 9-1 führt Sie Schritt für Schritt durch die Prüfungen, die durchgeführt werden sollten, um die Fehlerursache zu ermitteln und gibt ihnen Hinweise auf Abschnitte dieses Handbuches in denen Sie weiterführende Informationen finden können.

Tabelle 9-1: Fehlersuche

Symptom	Prüfung	Tätigkeit	Ref.
Keine Ausgangsspannung.	Ist das Netzkabel defekt?	Falls erforderlich, Netzkabel	3.7
Displays und Anzeigen sind		ersetzen.	
dunkel.	Ist die Netzspannung	Netzspannung prüfen, Gerät an	3.6
	innerhalb des	passende Versorgungsspannung	
	Eingangsbereiches?	anschließen.	
Ausgangsspannung liegt	Bricht die Netzspannung	Netzspannung prüfen, Gerät an	3.6
kurzfristig an, schaltet aber	zusammen wenn am Ausgang	passende Versorgungsspannung	
sofort wieder ab. Das Display	die Last angeschlossen wird?	anschließen.	
zeigt "AC" an.			
Ausgangsspannung liegt	Werden die Sense	Prüfen, ob die Lastleitungen	3.9.6
kurztristig an, schaltet aber	Anschlusse benutzt?		3.9.8
sofort wieder ab. Das Display		sina.	
zeigt "OUP an.	Arbeitet des Carëtins	Ctrombogropzupgopingtallungen	501
	Konstantstrom Modus?	Strombegrenzungseinstenungen	0.2.1 5.2.2
I ED am Frontpapel leuchtet	Konstantstrom-wodus?	und Lasisiron prulen.	J.Z.Z
Ausgangsspannung kann	Prüfen ob die Einstellung für	OVP oder UVL so einstellen	53
nicht eingestellt werden. CV-	die Ausgangsspannung über	dass keine Einschränkung im	5.4
LED am Frontpanel leuchtet.	der OVP oder unter der UVL	aewünschten Bereich erfolat.	•••
	Einstellung liegt.		
Ausgangsstrom kann nicht	Arbeitet das Gerät im	Strombegrenzung und	5.2
eingestellt werden.	Konstantspannungs-Modus?	Spannungseinstellungen prüfen.	
CV-LED am Frontpanel			
leuchtet.			
Die Ausgangsspannung hat	Werden die Sense	Last- und Senseleitungen auf	3.9.4
eine hohe Restwelligkeit.	Anschlüsse benutzt?	gute Verbindung prüfen.	3.9.8
	Ist der Spannungsfall über die	Spannungsfall an den	
	Lastleitungen sehr hoch?	Lastleitungen verringern.	
Keine Ausgangsspannung.	Der Uberspannungsschutz ist	Gerät mit dem Netzschalter	5.3
Am Display wird "OUP"	aktiv.	abschalten. Lastverbindungen	
angezeigt.		prüfen. Falls analoge	
		Programmierung verwendet wird	
		pruten, ob die Einstellungen für	
		ist	
Keine Ausgangsspannung	Das Display zeigt ENA" an	An der Rückseite den ENABLE	5.8
Alarm I ED am Frontnanel	Dus Display Zeigt "Ein (an.	Anschluss an 11 prüfen	0.0
blinkt.		SW1 ordnungsgemäß einstellen.	44
	Das Display zeigt "SO" an.	An der Rückseite den SHUT-OFF	5.7
		Anschluss an J1 prüfen.	••••
	Das Display zeigt "OTP" an.	Prüfen, ob die Lüftungs-	5.12
		öffnungen verschlossen sind oder	
		ob sich Heizquellen in der Nähe	
		befinden.	
	Das Display zeigt "Fb" an.	Foldback Einstellung und	5.5
		Laststrom prüfen.	
Schlechte Lastregelung.	Sind die Sense-Leitungen	Sense-Leitungen laut	3.9.8
CV-LED am Frontpanel	ordnugsgemäß	Anweisungen im Handbuch	
leuchtet.	angeschlossen?	anschließen.	
Begienelemente am	vvird das Gerat im Local-	Gerat ausschalten und warten bis	7.2.5
Frontpanel sind ausser	LOCKOUT IVIODUS DETRIEDEN?	uie Anzeigen erloschen sind.	
	l	Detailgen.	

9.7 Sicherungswerte

Im Gerät befinden sich keine Sicherungen die durch den Anwender ersetzt werden können. Sicherungen sind als Schutz eingebaut, falls im Gerät Fehler auftreten sollten. Sollte eine Sicherung auslösen, so muss das Gerät zur Reparatur gegeben werden. Sicherungen dürfen ausschließlich von dafür geschultem, technischen Personal ausgewechselt werden. In Tabelle 9-2 sind die Sicherungswerte aufgelistet.

Tabelle 9-2: Interne Sicherungen

Sicherungs-Bezeichnung	3-phasig, 190-240Vac	3-phasig, 380-415Vac
Eingangssicherung	F301, F302, F303:	F651, F652, F653:
	30A, 250Vac, Flink	15A, 600Vac, Flink
F401, F402	5A, 400Vdd	c, mittelträge

-

TDK·Lambda _____

USER MANUAL INDEX

Α		1	
ac cables	9. 16	ID control	53
ac fail	30	initialization	54
accessories	9	installation	14
acknowledge	52	isolated	63
address	19 49		
adjustment	67	J	
auto-restart	39	J1	33, 46, 47
	00	.12	17.26
В		J3	50
– back space	53		
baud rate	10 /0	1	
binolar voltage	13, 43	Last setting memory	29.39
bipolal voltage		linking nower supplies	52
C		line feed	52
calibration	67	local operation	35
configuration	40		26
coniguration	49	lock front nonal	11
checkSum	52		44
communication	52, 62		67
	18, 35	maintenance	12
constant voltage	18, 35	Master/Slave	4Z 50
cooling	9, 11		52
cv indicator	28, 38	U	
cc indicator	28, 38	otp	39
_		outline	13
D		over voltage	28,36
daisy-chain	44, 52	_	
display	28	Р	
		parallel operation	42
E		parity	62
enable	34	ps_ok	38, 44
error message	53	preview	29
external resistor	47		
external voltage	46	R	
		rack mounting	14
F		rear panel	30
fine	30	remote sensing	27
foldback	19, 37	remote/local	29
fuse	68	registers structure	58
front panel control	28	RS232	49, 50, 51
front panel locking	44	RS485	49, 50, 51
		RXD	50, 51
G		RX(RS232)	50, 51
grounding	25		
global output command	56	S	
		safe start	39
Н		safety	4
humidity	11	series operation	39
hyper terminal	62	shield	50
VI		specifications	10, 63
		status control	57. 58
		SRQ	58
		shut-off	37
		SW1	31, 32

T TXD TX(RS232)	50, 51 50, 51
U under voltage limit	18, 37
V volts display	28
W warranty wire size	1, 67 20

NOTES

NOTES

TDK-Lambda Corporation | https://www.tdk-lambda.com/en